
Reasoning in the Defeasible Description Logic EL⊥
—Computing Standard Inferences under Rational and Relevant Semantics

Maximilian Pensela,1,∗, Anni-Yasmin Turhana,2

aInstitute for Theoretical Computer Science, Technische Universität Dresden

Abstract

Defeasible Description Logics (DDLs) extend Description Logics with defeasible concept inclusions. Reason-
ing in DDLs often employs rational closure according to the (propositional) KLM postulates. A well-known
approach to lift this closure to DDLs is by so-called materialisation. Previously investigated algorithms for
materialisation-based reasoning employ reductions to classical reasoning using all Boolean connectors. As a
first result in this paper, we present a materialisation-based algorithm for the sub-Boolean DDL EL⊥, using
a reduction to reasoning in classical EL⊥, rendering materialisation-based defeasible reasoning tractable.

The main contribution of this article is a kind of canonical model construction, which can be used
to decide defeasible subsumption and instance queries in EL⊥ under rational and the stronger relevant
entailment. Our so-called typicality models can reproduce the entailments obtained from materialisation-
based rational and relevant closure and, more importantly, obtain stronger versions of rational and relevant
entailment. These do not suffer from neglecting defeasible information for concepts appearing nested inside
quantifications, which all materialisation-based approaches do. We also show the computational complexity
of defeasible subsumption and instance checking in our stronger rational and relevant semantics.
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1. Introduction

Description Logics (DLs) are a collection of logics that have formally defined syntax and semantics. Most
DLs are fragments of (the two-variable fragment of) First Order Logic. In DLs concepts describe groups of
objects by means of other concepts (unary FOL predicates) and roles (binary relations). Such concepts can
be assigned names or related to other concepts as sub- and super-concepts in the so-called TBox. Technically,5

the TBox can be viewed as a theory constraining the interpretation of the concepts. An important standard
reasoning problem in DLs is to compute subsumption relationships between concepts. Such a relationship
holds between two concepts, if all instances of one concept must necessarily be instances of the other (w.r.t.
the TBox). Information on concrete objects is stored in the so-called ABox, where objects can be related
to each other by roles or can be asserted as an instance of concepts, referring to the concepts defined in10

the TBox. Here a standard reasoning task is instance checking, i.e. deciding whether an individual does
necessarily belong to a concept.

While classical DLs allow only for monotonic reasoning, there have been many approaches to extend DLs
to non-monotonic reasoning. Earlier combinations of DLs and non-monotonic reasoning included defaults [1]
or autoepistemic logic [2]. Recently investigated approaches are adaptations of circumscription to DLs [3] and15

∗Corresponding author
Email addresses: maximilian.pensel@tu-dresden.de (Maximilian Pensel), anni-yasmin.turhan@tu-dresden.de

(Anni-Yasmin Turhan)
1Supported by the German Research Foundation (DFG) in the Research Training Group QuantLA (GRK 1763).
2This work is supported in part by the German Research Foundation (DFG) within the Collaborative Research Center

SFB 912 – HAEC.

Preprint submitted to International Journal of Approximate Reasoning Oct 2018



defeasible DLs [4–9]. The latter have attracted a lot of research interest over the last years. Most defeasible
DLs allow to state relationships between concepts that can be overwritten by more specific information
and that characterise typical instances of a concept. Here, concepts may not always be consistent with
all the defeasible information, hence some of it is defeated (disregarded) in order to perform consistent
reasoning. There is a close relationship between the notion of typicality and defeasibility: the more defeasible20

information can be used for reasoning about a concept, the more typical it is considered.
Usually, the semantics of defeasible DLs are based on a translation of propositional rational reasoning

introduced by Kraus, Lehmann and Magidor (KLM) in [10] to DLs. Recent investigations are on a typi-
cality operator under preferential model semantics in [9], a syntactic materialisation based approach [4, 8],
characterised with a different kind of preferential model semantics in [7] and extensions of rational reasoning25

to the stronger lexicographic and relevant closure in [6, 8].
The idea for lifting preferential and rational entailment from propositional logics [10] to description logics

in [4] is to supply material implications based on defeasible axioms to the current subsumption or instance
query. A known short-coming of this approach is that defeasible information is then only used locally for
instances of the concepts mentioned in the query, but not necessarily for objects related to them by roles.30

Thus not all of the available and un-defeated information is used for the computation of consequences. To
remedy this impairment was the main motivation for our investigations in [11, 12]. There, we considered
subsumption in the DDL EL⊥ first based on rational closure [12] and then on relevant closure [11]. We
focussed on the DL EL, since it enjoys good computational properties: subsumption and instance checking
can be computed in polynomial time [13, 14]. In this DL complex concepts are built by conjunctions and35

existential restrictions, which are a form of quantification and clearly not expressible by propositional logic.
Despite its moderate expressivity, many applications rely on EL, predominantly the Bio-Medical domain and
Semantic Web applications using the web ontology language and its OWL 2 EL profile. In contrast to EL,
its extension EL⊥ can express disjointness of concepts and thus conflicting information. This ability renders
satisfiability testing in the defeasible variant of EL⊥ non-trivial. We consider in this paper non-monotonic40

subsumption and non-monotonic instance checking in defeasible EL⊥. The DLs EL and EL⊥ have the
canonical model property, i.e., such models can be embedded into all other models. Reasoning in logics that
admit canonical models then boils down to computing the canonical models. In these models syntactical
subconcepts from the TBox and, in case of ABox reasoning also the individuals are each represented by
a domain element from the interpretation domain. Once the canonical model has been computed, the45

information for deciding subsumption or instance relationships can directly be read-off from this model.
Earlier approaches for computing these two inferences for defeasible DLs use reductions to classical

reasoning with material implications [4, 8]. Generally, such reductions are desirable, since they allow to
employ highly optimized DL reasoners for implementations instead of developing new systems from scratch.
However, in order to remedy the impairment of materialisation, we do not concentrate on materialisation50

only, but we develop in this article a new kind of canonical models for the DDL EL⊥. This kind of models uses
multiple representatives for each concept and thereby represents variations of the same concept satisfying
different levels of typicality, i.e. different amounts of defeasible statements. This new kind of canonical
models is called typicality models.

We investigate in this article reasoning by those typicality models for a range of different semantics which55

are determined by two parameters. One of them is the coverage of objects. Materialisation-based approaches
have a propositional coverage of objects, in the sense that defeasible information is not propagated along role-
relationships to other objects. Alternatively, defeasible information can (and should) be used for concepts
appearing nested in existential restrictions or for objects that are related to the object of interest in an
instance check. We extend typicality models to accommodate defeasible information for nested coverage.60

The other parameter determning the semantics is the strength of the conclusion. This parameter is in line
with [8], presenting relevant closure, a stronger form of defeasible entailment than rational closure. We
consider all of the semantics determined by the two parameters with two values each:

• strength of defeasible conclusions: relevant or rational

• coverage of objects with defeasible information: propositional or nested.65
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We investigate in this paper the reasoning services of defeasible subsumption and defeasible instance checking
under all four combinations of these values. We begin with propositional coverage. The typicality models
that admit propositional coverage, have only role-successors of minimal typicality in common. The canonical
model for this class of models is therefore called the minimal typicality model. In order to be able to
prove that typicality models supply those (defeasible) inferences that materialisation can provide and that70

it is not just an orthogonal approach, we first investigate reasoning by typicality models that provide
propositional coverage and show that these can capture materialisation-based reasoning. In a second step,
we extend typicality models to accommodate nested coverage. Typicality models that admit nested coverage
of defeasible information can have many role-successors of maximised typicality in common. This means
that role successors fulfil as much of the defeasible information as possible, as long as consistency is retained.75

These models are called maximal typicality models. We show that reasoning with maximal typicality models
provides not only (strictly) more defeasible consequences, but also successfully allows defeasible consequences
to be derived for quantified concepts and assertionally related objects.

The reasoning methods for deciding defeasible subsumption under propositional and under nested cover-
age have already been investigated by us in [11, 12]. The results on instance checking are new contributions80

in this article. Our methods on this reasoning task also alleviate the restrictions that earlier approaches
impose on the knowledge base. In [4] the authors give a materialisation-based procedure for defeasible
instance checking under rational closure only for unfoldable TBoxes, i.e. TBoxes that do not admit cyclic
definitions and for ABoxes that fulfil certain syntactic conditions. Our algorithms for deciding the instance
checking problem do not impose these restrictions. Furthermore, to the best of our knowledge we present85

the first reasoning algorithm for defeasible instance checking under relevant strength for propositional and
nested coverage.

We investigate the computational complexity of defeasible subsumption and instance checking for the
four different semantics. We obtain completeness results for rational strength and containment results for
relevant strength.90

Before we define and study reasoning by typicality models in this paper, we revisit the materialisation-
based approach originally devised for the propositionally complete DL ALC, which extends EL. As mate-
rialisation is a reduction to classical reasoning and thus certainly interesting for practical applications of
defeasible reasoning, we investigate the special case of materialisation in EL⊥. Materialisation for defeasible
ALC uses all Boolean connectors to express material implications and employs EXP–Time complete ALC95

reasoning. Now, for EL⊥ one would like to attain a reasoning algorithm that remains polynomial. Casini
et al. have claimed [4] that, generally, defeasible reasoning in a DDL does not increase the computational
complexity of reasoning compared to its classical counterpart. While this is not hard to see for DLs al-
lowing all Boolean connectors, where reasoning is already exponential, this is not immediately clear for
sub-Boolean DDLs such as EL⊥. We devise a variant of the materialisation-based approach that does use100

only the expressivity of EL⊥ and thus can be handled by reasoners for that DL. Our materialisation for EL⊥
gives evidence to the claim that complexity of reasoning need not increase when moving from classical to
defeasible sub-Boolean DLs.

The paper is structured as follows. We introduce the basic notions of Description Logics and discuss
operations on models to prepare the construction of maximal typicality models in Section 2. In Section105

3 we recall and discuss the materialisation-based approach from [4, 8, 15]. We present new variants of
materialisation for the two reasoning problems considered by use of EL⊥-syntax and reasoning. We describe
typicality models in Section 4 and characterise a canonical model for propositional coverage semantics,
providing the same consequences as materialisation-based reasoning. In Section 5 we proceed to extend the
typicality models to account for ABox individuals and show soundness and completeness of our approach for110

instance checking. Finally we investigate the computational complexity of this novel approach in Section 6
with the result of a strict increase in complexity over classical reasoning. We end the article with concluding
remarks and an outlook towards future work in Section 7.

3



2. Preliminaries

2.1. Preliminaries on DLs115

We introduce the basic notions of the (defeasible) DLs ALC and its fragment EL⊥, as well as their
inferences. Starting from two disjoint sets NC of concept names and NR of role names, complex concepts
can be defined inductively. Let C and D be ALC-concepts and r ∈ NR, then (complex) ALC-concepts are:

• named concepts A (A ∈ NC),

• the top-concept >,120

• the bottom-concept ⊥,

• negations ¬C,

• conjunctions C uD,

• disjunctions C tD,

• existential restrictions ∃r.C, and125

• value restrictions ∀r.C.

The DL EL⊥ is a sub-Boolean fragment of ALC allowing the concept constructors conjunction and existential
restriction, as well as the concepts > and ⊥.

The semantics of concepts is given by means of interpretations. An interpretation I = (∆I , ·I) consists of
an interpretation domain ∆I and a mapping function ·I that assigns subsets of the domain ∆I to concept130

names and binary relations over the domain ∆I to role names. The top-concept is interpreted as the
whole domain (>I = ∆I) and the bottom-concept as the empty set (⊥I = ∅). The complex concepts are
interpreted as follows:

• (¬C)I = ∆I \ CI ,

• (C uD)I = CI ∩DI ,135

• (C tD)I = CI ∪DI ,

• (∃r.C)I = {d ∈ ∆I | ∃e.(d, e) ∈ rI and e ∈ CI}, and

• (∀r.C)I = {d ∈ ∆I | (d, e) ∈ rI =⇒ e ∈ CI}.

If in an interpretation I (d, e) ∈ rI holds, then e is called a role successor of d, conversely, d is called a role
predecessor of e and (d, e) is called a connection (or edge) in r. For concepts C and role names r, CI and140

rI are frequently called the extensions of C and r under the interpretation I. A concept C is satisfied by
an interpretation I iff CI 6= ∅. The expression “C is satisfied by I with d ∈ ∆I”, implies d ∈ CI .

DL ontologies can state (monotonous) relationships between concepts. Let C and D be concepts. A
general concept inclusion axiom (GCI) is of the form: C v D. A TBox T is a finite set of GCIs. A GCI C v
D is satisfied in an interpretation I, iff CI ⊆ DI (written I |= C v D). An interpretation I is a model of a145

TBox T , iff I satisfies all GCIs in T (written I |= T ). The TBox is used to express conceptual knowledge, it
poses as a set of constraints on interpretations. Sometimes, in addition to conceptual knowledge, one needs
to express facts about named individuals (in the world), e.g. entries in a database. The set of individual
names NI is introduced as a disjoint set from NC and NR and we frequently use lower-case letters a, b ∈ NI
for individuals. The semantics of individuals are given by interpretations, with aI ∈ ∆I . In order to express150

facts about individuals, concept assertion axioms C(a) and role assertion axioms r(a, b) are collected in a
finite set, called the ABox A. An interpretation satisfies a concept assertion C(a) iff aI ∈ CI and a role
assertion r(a, b) iff (aI , bI) ∈ rI , and it is a model of the ABox A, if it satisfies all the assertion axioms in
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A (written I |= A). The combination of an ABox A and a TBox T is called a knowledge base K = (A, T )
and I |= K iff I |= T and I |= A.155

Based on the notion of a model, DL reasoning problems are defined. A knowledge base K = (A, T )
is called consistent iff there exists a model of K. A concept is consistent w.r.t. a TBox T (or KB K) iff
some model of T (resp. K) satisfies the concept. A concept C is subsumed by a concept D w.r.t. a TBox
T (written C vT D or T |= C v D) iff CI ⊆ DI holds in all models I of T . Two TBoxes T1 and T2

are equivalent, iff I |= T1 ⇐⇒ I |= T2 holds for all interpretations I. A statement C(a) is entailed by a160

knowledge base K = (A, T ) (written K |= C(a)) iff aI ∈ CI for all models I of K. Instance checking is to
decide whether K |= C(a) holds for given C, a and K.

Note that subsumption w.r.t. a consistent knowledge base is independent of the ABox i.e. (A, T ) |= C v
D iff T |= C v D. In contrast to this, instance checking depends on a (non-empty) TBox, e.g. K |= C(a) and
K |= C v D implies K |= D(a). Inconsistency of a knowledge base can also be captured with subsumption165

as K |= > v ⊥ or instance checks K |= ⊥(a).
We fix some notation for the remainder of the paper to access parts of knowledge bases or concepts. Let

X denote a concept or a TBox, ABox, KB, then sig(X) denotes the signature of X, i.e. the set of concept,
role and individual names occurring in X. We define sigC(X) = sig(X) ∩NC , sigR(X) = sig(X) ∩NR and
sigI(X) = sig(X)∩NI (the latter is mostly used with an ABox or KB X). We also define the set Qc(X) of170

quantified concepts in X as F ∈ Qc(X) iff ∃r.F syntactically occurs in X for some r ∈ NR.
In extensions of EL that are in the Horn fragment of DLs, canonical models are widely used for reasoning

[13]. For an EL⊥-TBox T , the canonical model IT = (∆IT , ·IT ) of T with ∆IT = {dF | F ∈ Qc(T )} has
the mapping function satisfying the conditions:

• dF ∈ AIT iff F vT A and175

• (dF , dG) ∈ rIT iff F vT ∃r.G.

Once the canonical model is computed, subsumption relationships between concepts can be directly read-off
from it [13, 14], i.e. T |= C v D iff dC ∈ DIT .

A canonical model IA,T can be constructed for a knowledge base K = (A, T ) with ∆IA,T = {dF | F ∈
Qc(K)} ∪ {da | a ∈ sigI(A)} such that the mapping function satisfies the same conditions as ·IT as well as:180

• aIA,T = da,

• da ∈ AIA,T iff (A, T ) |= A(a),

• (da, dG) ∈ rIA,T iff (A, T ) |= (∃r.G)(a) and

• (da, db) ∈ rIA,T iff r(a, b) ∈ A.

Entailments of K, including instance relationships, can be read-off from IA,T , i.e. K |= C(a) iff da ∈ CIA,T .185

2.1.1. Defeasible Description Logics
In defeasible DLs it can be stated that a concept is subsumed by another concept as long as there is

no contradicting information. A defeasible concept inclusion (DCI) is of the form C @∼ D and states that
elements of C are usually also elements of D. A DBox D is a finite set of DCIs. A defeasible knowledge
base (DKB) K = (A, T ,D) consists of an ABox A, a TBox T and a DBox D. When convenient, we skip a190

component of the triple and assume that it is the empty set. The definitions for sig(X), sigC(X), sigR(X)
and Qc(X) extend to DBoxes or DKBs in the obvious way.

The semantics of DBoxes differ from the ones for TBoxes, since DCIs need not hold at each element
in the model whereas GCIs do. The satisfaction of a finite set of DCIs D for d ∈ ∆I is captured by
I, d |= D iff ∀G @∼ H ∈ D.d ∈ GI =⇒ d ∈ HI . Intuitively, the more DCIs are satisfied by a domain195

element d, the more typical d can be considered. Usually, the semantics of DBoxes is given by means of
ranked/ordered interpretations—called preferential model semantics [7, 9]. Instead of using these, we define
a new kind of model for DKBs (in Sect. 4) that extends canonical models for EL⊥. The main idea is to use
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several copies of the representatives, such as dF , for each existentially quantified concept, where each copy
satisfies a different set of DCIs from the powerset of the DBox. We want to develop a decision procedure200

for (defeasible) subsumption relationships between concepts, say C and D, and (defeasible) instance checks,
say C(a), w.r.t. a given DKB K under both, rational and relevant semantics.

For the remainder of the article we make three simplifying assumptions about knowledge bases for the sake
of ease of presentation. We assume w.l.o.g. that

1. concepts C and D appear syntactically in Qc(K) which can be achieved by adding ∃r.E v > with205

E ∈ {C,D} to T ,

2. all quantified concepts in K are consistent i.e. , ∀F ∈ Qc(K).F 6vT ⊥ and thus ⊥ /∈ Qc(K), and

3. every ABox A is conjunction-free, i.e. (C uD)(a) /∈ A for any two concepts C and D (for every ABox
there exists an equivalent conjunction-free ABox).

Assumptions 1 and 3 obviously preserve generality. Assumption 2 preserves generality, because every KB210

can be transformed to a KB where all quantified concepts are consistent by replacing entire existential
restrictions ∃r.X by ⊥, whenever X vT ⊥. Clearly the resulting KB is has the same models as the original
one, since X ≡T ⊥ =⇒ ∃r.X ≡T ⊥.

2.2. Basic Operations on Interpretations
We introduce operations on interpretations that we need in the technical constructions later on. The215

first operation, (cross-)product of interpretations, is a standard notion in classical description logics that is
commonly used in proofs.

Definition 2.1. Given two interpretations I and J . The product interpretation of I and J is defined as
I × J = (∆I ×∆J , ·I×J ), where

• AI×J = AI ×AJ (A ∈ NC)220

• rI×J = {((a, b), (c, d)) | (a, c) ∈ rI ∧ (b, d) ∈ rJ } (r ∈ NR).

• aI×J = (aI , aJ )

In the description logic EL⊥, the set of all models of a knowledge base is closed under products [16, 17].
This often helps us to combine two models that each do not support a certain entailment, e.g. d 6∈ CI and
e 6∈ DJ , in order to obtain a single model not supporting either of the respective entailments, e.g. d 6∈ CI×J225

and e 6∈ DI×J .
The next notion, lifting set operations to interpretations, is less commonly used in DLs, as some set

operations over interpretations are only useful in very specific cases.

Definition 2.2. For two interpretations I = (∆I , ·I),J = (∆J , ·J ) and an operation ./ ∈ {∩,∪}, we
define230

• I ./J = (∆I ./∆J , ·I ./J ) with AI ./J = AI ./AJ (for A ∈ NC) and rI ./J = rI ./ rJ (for r ∈ NR)

• I ⊆ J iff ∀A ∈ NC .AI ⊆ AJ , ∀r ∈ NR.rI ⊆ rJ and ∀a ∈ NI .aI = aJ . I is called a sub-interpretation
of J .

Remark 2.3. In this article, we will use the notion of interpretation intersection and sub-interpretations
exclusively on two interpretations over the same domain. The notion of sub-interpretations adapts to strict235

inclusion and equality in the obvious way. The intersection of two interpretations over a shared domain
clearly yields the same domain again, the same holds for the union of such interpretations. Eventually, the
union of interpretations is used both, for interpretations over a shared domain as well as interpretations
over arbitrary domains. In case individuals a ∈ sigI(K) are considered, in this article, either only one of the
involved interpretations considers extensions of the individuals, therefore it is clear how to define aI ./J , or240

every individual is mapped to the same domain element under both interpretations, in which case there is
also only one sensible definition for aI ./J .
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Sometimes we need to manipulate interpretations and would like to specify the resulting interpretation only
by the change of the interpretation mappings. This can be done by means of substitutions.

Definition 2.4. Let I = (∆, ·I) be an interpretation. We call substitutions of the kind245

• A/Y (with Y ⊆ ∆, A ∈ NC) concept substitutions, and

• r/X (with X ⊆ ∆×∆, r ∈ NR) role substitutions,

• a/d (with d ∈ ∆, a ∈ NI) individual substitutions.

Let σ be a finite set of role, concept and individual substitutions, where each concept, role or individual
name is substituted at most once. The interpretation I[σ] = (∆, ·I[σ]) is obtained from I by applying the250

substitutions in σ to I, where

• AI[σ] =

{
Y , if A/Y ∈ σ
AI , otherwise

(for A ∈ NC)

• rI[σ] =

{
X , if r/X ∈ σ
rI , otherwise

(for r ∈ NR)

• aI[σ] =

{
d , if a/d ∈ σ
aI , otherwise

(for a ∈ NI)

Applying substitutions to interpretations is useful, in particular, because it allows to easily reduce (e.g.255

I[A/∅, B/{d}]) or extend (e.g. I[r/rI ∪ {(d, e)}]) a given interpretation I, in a succinct and well-defined
way by specifying only the local changes.

A standard notion in DLs is disjointness of interpretations. Two interpretations are disjoint if they have
disjoint domains. An important property for EL⊥ is that the disjoint union of two models of a TBox is again
a model of that TBox. We generalise disjointness of two interpretations by allowing both domains to share260

some elements. If certain conditions are met, we can still obtain a property that normally holds for disjoint
interpretations.

Definition 2.5. An interpretation J = (∆J , ·J ) is quasi-disjoint from an interpretation I = (∆I , ·I) iff

• ∀A ∈ NC holds AJ ∩∆I = ∅ and

• ∀r ∈ NR holds rJ ∩
(
∆I × (∆I ∪∆J )

)
= ∅.265

Quasi-disjointness relaxes disjointness in the sense that the shared domain elements do not occur in the
range of interpretation mappings for concepts or roles of J , i.e. J “attaches no concept or role information”
to shared elements. Thus quasi-disjointness is not a symmetric relation, however it properly generalises
disjointness, as I is quasi-disjoint from J (and the other way around), if ∆I is disjoint from ∆J . Disjoint
unions of interpretations trivially satisfy CI]J ∩ ∆I = CI . That means, one can effectively reconstruct270

the original interpretation mapping of I from the disjoint union I ] J . This property holds already for
(non-disjoint) unions of two interpretations, where one interpretation is quasi-disjoint from the other.

Proposition 2.6. For two interpretations I = (∆I , ·I) and J = (∆J , ·J ) s.t. J is quasi-disjoint from I
it holds that

CI∪J ∩∆I = CI

for all EL⊥ concepts C.275

7



Proof. We prove the claim by induction on the concept C. The case of C = ⊥ is trivial. In case C = A with
A ∈ NC , AJ ∩∆I = ∅ holds by quasi-disjointness of J from I and thus AI∪J ∩∆I = (AI ∪AJ )∩∆I = AI .
Assume as induction hypothesis (IH) the claim holds for the EL⊥ concepts E,F . For C = E u F it holds
that

(E u F )I∪J ∩∆I = EI∪J ∩ F I∪J ∩∆I

= (EI∪J ∩∆I) ∩ (F I∪J ∩∆I)

IH
= EI ∩ F I

= (E u F )I .

For the case C = ∃r.E, it holds that rJ ∩
(
∆I × (∆I ∪∆J )

)
= ∅ by quasi-disjointness of J from I, which

implies rI∪J ∩ (∆I ×∆I∪J ) = rI (∗). Clearly,

(∃r.E)I∪J ∩∆I = {d ∈ ∆I | ∃e ∈ ∆I∪J .(d, e) ∈ rI∪J ∧ e ∈ EI∪J }.

The pairs (d, e) considered in the condition of this set belong to ∆I ×∆I∪J (since d ∈ ∆I) and therefore,
(∗) allows to conclude (d, e) ∈ rI . If (d, e) ∈ rI , then e ∈ ∆I and thus e ∈ EI∪J ∩ ∆I = EI by the
induction hypothesis. It follows that

{d ∈ ∆I | ∃e ∈ ∆I∪J .(d, e) ∈ rI∪J ∧ e ∈ EI∪J }
= {d ∈ ∆I | ∃e ∈ ∆I .(d, e) ∈ rI ∧ e ∈ EI}
= (∃r.E)I .

�

Proposition 2.6 allows to characterise certain properties of some interpretation I, then introduce an
interpretation J that is quasi-disjoint from I and carry those properties over to I∪J .280

To motivate our approach for reasoning under rational and relevant semantics in defeasible EL⊥, we
recall first earlier approaches for this task and discuss several effects that are inherent for the characterised
defeasible entailment relations.

3. On Materialisation-based Approaches for Reasoning in DDLs

In this section we introduce and discuss reasoning algorithms for DDLs that use a reduction to classical285

reasoning to determine (KLM-style) rational and relevant non-monotonic inferences. The reduction to
classical reasoning is obtained by the materialisation of DCIs. What we call the materialisation-based
approach was initially introduced in [4] for defeasible subsumption and instance checking under rational
closure. Deciding defeasible subsumption was lifted to relevant closure (along with a more sophisticated
version for subsumption under rational closure) in [8]. For subsumption under both closures, we refer to [8],290

and for instance checking under rational closure, we refer to [4], as it has not been introduced for relevant
closure prior to this article.

The materialisation-based approach proceeds in two steps. First, for a given query, a consistent subset of
the DBox is determined, depending on the chosen strength of the defeasible conclusion (rational, relevant).
This set of DCIs is then materialised, in order to “enrich” the query with defeasible information. For295

subsumption, this enrichment occurs syntactically on the left-hand side of the subsumption query, i.e. the
considered domain elements are restricted to those satisfying the materialised part of the consistent DBox
subset. For instance checking, all individuals in the ABox are enriched by the materialisation of a consistent
DBox subset (depending on the individual), using concept assertion axioms to extend the ABox.

Since the formalism introduced as the main contribution of this article relies on the use of the DL EL⊥300

we investigate the materialisation-based approach within EL⊥, which is not a trivial matter, as the main
aspect of materialising DCIs (C @∼ D  ¬C tD) cannot be done while remaining in EL⊥. As the first result
of this article, the consequence of Section 3.2 is that the materialisation-based approach remains polynomial
for the DL EL⊥ as claimed in [4]. This result is not clear from the approach described in [4, 8].
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3.1. Revisiting Materialisation-based Defeasible Reasoning305

We briefly recall the reduction algorithms for reasoning about defeasible KBs. More precisely, we discuss
subsumption under rational and relevant closure as described by Casini et al. in [8], as well as the reduction
algorithm for instance query answering under rational closure as introduced in [4]. For technical details and
in-depth motivation, we refer the reader to the papers [4, 8].

Partitioning of the DBox. To decide defeasible subsumption C @∼ D w.r.t. a given DKB K = (T ,D) under
rational closure the algorithm in [8] uses materialisation of DCIs. The idea is, that an element that belongs
to ¬E t F also satisfies the DCI E @∼ F . A concept C can be enriched with defeasible information, for
instance by considering classical consequences of the concept C u (¬E t F ), i.e. consequences that follow
from those elements in C that also satisfy E @∼ F . To that end, the materialisation of a set of DCIs D is
defined as D =

d
E@∼F∈D

(¬E t F ). Since C might be inconsistent w.r.t. the materialisation of the entire
DBox D, the algorithm needs to determine a subset D′ ⊆ D whose materialisation is consistent with C and
T in order to decide whether D′ u C vT D holds. To obtain D′, D is iteratively reduced to that subset
containing all DCIs whose left-hand sides are inconsistent in conjunction with the materialisation of the
current DBox:

E(D) = {C @∼ D ∈ D | T |= D u C v ⊥}.

They define E1(D) = E(D) and Ej(D) = E(Ej−1(D)) (for j > 1). Using E(), the DCIs in D can be ranked
according to their level of exceptionality, i.e. , rK(G @∼ H) = i − 1, for the smallest i s.t. G @∼ H 6∈ E i(D),
or rK(G @∼ H) = ∞ if no such i exists. A DKB K = (T ,D) is well-separated if no DCI in D has an
infinite rank of exceptionality [7]. Since every DKB (that includes the concept ⊥) can be transformed into
a well-separated one deciding a polynomial number of classical subsumptions, we assume w.l.o.g. that all
DKBs in this article are well-separated. Based on the level of exceptionality rK(), the algorithm from [8]
partitions the DBox D into (E0, E1, . . . , En) where Ei = {G @∼ H ∈ D | rK(G @∼ H) = i}, i.e. D =

⋃n
i=0Ei.

To find the maximal (w.r.t. cardinality) subset D′ of D, whose materialisation is consistent with C and T
the procedure starts with D′ = D. If D′uC vT ⊥, then Ei is removed from D′ for the smallest not yet used
i. This test and removal is done iteratively until a subset of D is reached whose materialisation is consistent
with C and T . We denote the resulting subsets of D by

Di =

n⋃
j=i

Ej ,

where 0 ≤ i ≤ n is the number of iterations that the above procedure was executed. We frequently use the310

expression “consider the least i for which Di is consistent with C”.
While rational closure treats inconsistencies with the granularity of the partitions Ei, relevant closure

uses a more fine-grained treatment. To illustrate this, let G @∼ H ∈ E0 and assume that C is only consistent
with D \ E0 (or its subsets). In this situation

(¬G tH) u D \ E0 u C vT ⊥

need not hold, since the inconsistency may be due to other DCIs in E0. Still G @∼ H is never used for
reasoning about C. This effect is called inheritance blocking, as it might be possible to include G @∼ H
for reasoning about C, but other DCIs induce some inconsistency and so block the inheritance of property
G @∼ H for C. Under relevant closure, only DCIs that are relevant for the inconsistency of C are disregarded,315

thereby averting inheritance blocking. General relevant closure and two specific constructions (basic and
minimal relevant closure) are introduced in [8] in terms of justification.

Definition 3.1. Let K = (T ,D) be a DKB, J ⊆ D, and C a concept. J is a C-justification w.r.t. K iff
J u C vT ⊥ and J ′ u C 6vT ⊥ for all J ′ ⊂ J .

Let justifications(K, C) = (J1, . . . ,Jm) be the function that returns all C-justifications w.r.t. K. Such a set320

can be computed in exponential time in the size of C and K [18, 19].
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In order to obtain a subset of D that is consistent with C, at least one statement from every justification
has to be removed from D. We focus on the strongest closure introduced in [8], which is minimal rele-
vant closure.3 By a preference of exceptionality rank, the removed statements shall be the rank-minimal4
parts of all justifications. For any set of DCIs U ⊆ D, let minrK(U) ⊆ U contain those DCIs from U325

that are minimal w.r.t. rK(). For K = (T ,D), the subset of D that is consistent with a concept C for
justifications(K, C) = (J1, . . . ,Jm) for minimal relevant closure is DC = D \ (

⋃m
i=1minrK(Ji)). DX is

therefore uniquely determined by the concept X for a given DKB.
Recall our notation from the Introduction to refer to combinations of different parameters in order to

determine the semantics. We can use {rat, rel}×{mat} to characterise the materialisation-based entailment
relations for subsumption. Let K = (T ,D) be a DKB and consx() a function which determines for a DBox
D and a concept C a consistent subset of the DBox to be used for reasoning, where the subset is picked
according to the reasoning strength x ∈ {rat, rel}. We denote non-monotonic subsumption entailments
obtained by materialisation-based reasoning as

K |=(x,mat) C @∼ D iff consx(D, C) u C vT D.

For rational strength we define consrat(D, C) = Di for partition(D) = (E0, . . . , En) where 0 ≤ i ≤ n is the
least i s.t. Di is consistent with C (as considered above). For relevant strength we consider consrel(D, C) =330

DC , as defined above.

Defeasible Instance Checking. Instance checking by materialisation is only considered under rational closure
[4]. This algorithm requires the following about the DKB:

• T is unfoldable, i.e. only contains axioms of the form A v C, A = C for A ∈ NC such that each A
occurs at most once on the left-hand side of an axiom and T is acyclic.335

• A is complete which means in case of EL⊥:

– (C uD)(a) ∈ A =⇒ C(a) ∈ A ∧D(a) ∈ A and

– (∃r.C)(a) ∈ A =⇒ ∃b ∈ sigI(A).r(a, b) ∈ A ∧ C(b) ∈ A.

The algorithm has a preprocessing phase which performs the well-separation of TBox and DBox and
computes the rational DBox partition as described above. It unfolds the TBox, i.e. replace concept names A340

occurring in A and D for A v C ∈ T by C uA′ (fresh A′ ∈ NC) and for A=C ∈ T by C. After this step the
TBox can be omitted. Next, the ABox is transformed into a complete ABox. Their actual materialisation
algorithm gets as input the complete ABox A and a DBox partition partition(D).

The main idea is now to find the subset Di of D, for the least i s.t. Di is still consistent with an individual
a ∈ sigI(A). Consistency can be checked by adding the concept assertion of the material implication of Di for345

a: A′ = A∪{Di(a)} and check for consistency of A′. In case Di is consistent with an individual a, the ABox
is extended by the appropriate material implication concept assertion. However, since two individuals a and
b might be explicitly connected in A, e.g. r(b, a) ∈ A, enriching individual b with defeasible information can
influence the least i for which Di is consistent with a after enriching b. For example, A = {r(a, b), r(b, a)},
T = {A u ∃r.B v ⊥}5 and D = {> @∼ A u B}. The DBox esentially states that everything is typically350

in concept A and B and the TBox enforces that no element in A is allowed to have an r-successors to an
element in B. If a is enriched before b, then A(a), B(a) is added to A and b cannot become an instance of
B, since it is already an r-successor of a member of A. Dually, if b is enriched before a, then A(b), B(b) is
the only addition to the ABox.

3When convenient, we omit the word minimal in minimal relevant closure.
4Removing only the rank-minimal parts characterises minimal relevant closure, for a slightly different technique for the

basic relevant closure see [8].
5The example is in EL⊥, however the TBox is not unfoldable. T ′ = {A v ∀r.(¬B)} however is unfoldable and semantically

equivalent to T , albeit in ALC syntax.
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This motivates the addition of a sequence of the individuals in sigI(A) as a kind of preference relation355

to the knowledge base. This sequence determines in which order the individuals are enriched by defeasible
information, where an element that appears “earlier” in the sequence can potentially be enriched with more
defeasible information, as it is likely that less restrictions have been added to other individuals.

Let s = (a1, a2, . . . , an) be a (duplication-free) sequence of all elements in sigI(A). The reduction
algorithm iterates over s and for each individual ai it computes the least j such that A ∪ {Dj(ai)} is
consistent and adds Dj(ai) to A. The result is a so-called default assumption extension Asrat which is used
to characterise a consequence relation

K, s |=(rat,mat) C(a) iff Asrat |= C(a).

3.1.1. Analysis and Discussion
The present approach to defeasible KLM-style reasoning in description logics is mainly motivated by360

the effect of neglecting quantified concepts when reasoning based on material implications. Moreover,
we thoroughly investigate minimal relevant closure throughout the article, they are somewhat superior
to rational closure w.r.t. the mentioned effect called inheritance blocking. We keep investigating rational
strength at the same time, because resolving inheritance blocking through minimal relevant closure, comes
at the cost of computational complexity, as it takes exponential time in the size of the knowledge base to365

compute all justifications of a given concept [18, 19]. Additionally, the relevant closures are known not
to satisfy all KLM postulates [8], which can be interpreted as relevant entailment relations not being well
behaved in KLM-terms. For practicality, rational closure may be considered strong enough while being
computationally tractable in some sense.

The following example illustrates the problem of inheritance blocking occurring in rational closure, but370

not in minimal relevant closure, as well as the neglect of quantified concepts w.r.t. defeasible information.

Example 3.2. Let Kex1 = (Tex1,Dex1) with:

Tex1 = {Boss vWorker, Boss u ∃superior.Worker v ⊥},
Dex1 = {Worker @∼ ∃superior.Boss, Worker @∼ Productive, Boss @∼ Responsible}, and

partition(Dex1) =
(
E0 = {Worker @∼ ∃superior.Boss,Worker @∼ Productive},
E1 = {Boss @∼ Responsible}

)
.

When computing rational closure, the inconsistency Dex1 u Boss vTex1 ⊥ is detected, but Dex1 \ E0 u
Boss 6vTex1 ⊥ holds. Thus DKB Kex1 entails Boss @∼ Worker u Responsible. DKB Kex1 does not entail
Boss @∼ Productive, even though the DCI Worker @∼ Productive does not cause the inconsistency of Boss.

Under minimal relevant closure, J1 = {Worker @∼ ∃superior.Boss} is the only Boss-justification w.r.t.
Kex1. Therefore, the largest consistent DBox subset of Dex1 for reasoning about the concept Boss is the set

D′ = {Worker @∼ Productive, Boss @∼ Responsible},

providing the consequence D′ uBoss vTex1 Productive.375

Example 3.2 also illustrates the short-coming of materialisation. Materialising the DCIWorker @∼ Productive
to ¬Worker t Productive in conjunction with ∃superior.Worker yields a concept that is not subsumed
by ∃superior.Productive. The defeasible information is unjustifiably disregarded when reasoning about
quantified concepts yielding uniformly non-typical role successors. Hence, in Example 3.2, both rational and
relevant closure (based on materialisation) are oblivious to the conclusionWorker @∼ ∃superior.Responsible.380

In case of instance checking, the materialisation-based approach can lead to similar problems regarding
the quantified concepts. Since the ABox is unfolded w.r.t. the TBox, new existential restrictions can be
introduced into the ABox. The transformation into a complete ABox ensures that the initially anonymous
role successors are turned into named individuals for which then materialisation is performed. Thus the
(newly) named individuals can, in principle, satisfy defeasible information. Now, since DCIs can introduce
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role-successors by existential restrictions, new anonymous individuals are generated for which materialisation
is not performed. To illustrate this effect, consider A = {A(a)} and D = {A @∼ ∃r.C,C @∼ D}. Since A is
complete, the default assumption extension is

Asrat = A ∪
{(

(¬A t ∃r.C) u (¬C tD)
)
(a)
}
.

Clearly, Asrat |= ∃r.C(a), but Asrat 6|= ∃r.D(a) and thus K 6|=(rat,mat) (∃r.D)(a), even though nothing
contradicts this. Hence, the criticism for ignoring quantified concepts persists regarding the materialisation-
based approach.

Disregarding defeasible information for quantified concepts is essentially disregarding the full power of
description logics in the realm of KLM-style defeasible reasoning. Therefore, our goal is devise algorithms385

that consider defeasible information fully for quantified concepts when deciding defeasible subsumption and
instance checking. Furthermore, our approach requires less restrictions on the knowledge base for deciding
defeasible instance checks.

3.2. Materialisation Adapted to EL⊥
Our approach to alleviate the discussed issues relies on the canonical model property of the DL EL⊥. We390

do not want to propose an entirely new (unrelated) semantics for defeasible reasoning in DL. Many semantics
have been discussed in the literature and KLM-style preferential and rational reasoning is widely accepted.
Therefore, we want the present approach to properly extend the results from [4, 8] on materialisation-based
rational and relevant closure. This is achieved by first mimicking materialisation-based closures with our
formalism and then strictly extending their semantic power in terms of coverage of objects with defeasible395

information. In order to combine the requirement of EL⊥ and the need to emulate materialisation-based
reasoning. This section presents how to express materialisation-based reasoning in EL⊥ syntax, as concepts
such as ¬C tD are not in EL⊥ and we can obtain algorithms that are reduction algorithms using classical
EL⊥ reasoning. Such reduction algorithms to classical reasoning are desirable in their own right, since they
lend themselves to implementations. Casini et al. claim that materialisation-based reasoning resides in the400

same complexity as classical reasoning in the underlying DL, this however only (trivially) applies to Boolean
DLs. The results in this article show that this is also the case for the sub-Boolean EL⊥.

We use the expressive power of GCIs and augment the TBox to express materialisation in EL⊥. The
idea is to introduce a collection of new concepts for each original (sub-)concept C from the TBox, such that
these auxiliary concepts need to satisfy defeasible information in the same fashion as the materialisation405

is enforcing it. Several of the results (on materialisation-based defeasible subsumption in EL⊥) will not be
proven in detail here, as they are published in [11, 12] and elaborated on in full detail in [20].

3.2.1. Defeasible Subsumption by Materialisation Adapted to EL⊥
In the presence of the DBox {G @∼ H}, materialisation determines subsumers of a concept F , by comput-

ing the subsumers of (¬GtH)uF . To achieve the same effect, we introduce a fresh concept name F{G@∼H}410

that is intuitively a more typical subsumee of F . We require that

R1 F{G@∼H} is a subclass of F , i.e. F{G@∼H} v F is added to T and

R2 F{G@∼H} satisfies G @∼ H in all models of the DKB, i.e. F{G@∼H} uG v H is added to T .

The extended TBox is satisfied, if all elements in F{G@∼H} either do not belong to G or do belong to H. We
define an extension of the TBox, in order to be able to characterise the desired (more typical) subclass of F415

w.r.t. a whole set of DCIs D. Let Naux
C ⊆ NC be a set of concept names that do not occur in DKB K.

Definition 3.3 (extended TBox). Let F be a concept, FD ∈ Naux
C , T be a TBox T , and D be a DBox

D. The extended TBox of F w.r.t. D is:

TD(F ) = T ∪ {FD v F} ∪ {FD uG v H | G @∼ H ∈ D}. (1)
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In this definition {FD v F} ensures that requirement R1 is fulfilled. The last set of GCIs in Eq. (1) ensures
that every instance of FD satisfies requirement R2 for all the DCIs in D. Clearly, the extended TBox TD(F )
is an EL⊥ TBox if T is one. We want to show that classical reasoning w.r.t. TD(F ) produces equivalent
results to reasoning with defeasible information using the materialisation-based approach.420

As a first intermediate result, it holds that the auxiliary concept F∅ from the extended TBox T∅(F )
and the concept F from T have the same subsumers w.r.t. the signature of T and D. The intuition is
that without any material implications to the extended TBox, reasoning about the auxiliary concept F∅
coincides with reasoning about the original concept F . This property supports the proof of the main result
for equivalence of materialisation-based subsumption in ALC and EL⊥, where it acts as the induction start425

for the induction on the size of the set of DCIs D.

Proposition 3.4. Let T be a TBox and F,G be concepts with sig(G) ∩Naux
C = ∅.

Then F vT G iff F∅ vT∅(F ) G. � in [20]

It only remains to show that subsumees of a concept FD (by classical semantics) w.r.t. the TBox TD(F )
coincide with the classical subsumees of DuF for arbitrary sets of DCIs D. Since the definition of canonical430

models relies on classical reasoning in EL⊥, this result provides the means to define a canonical model
using (several) TBoxes TD(F ) and obtain subsumption consequences that are equivalent to those obtainable
through materialisation (c.f. Section 4).

Lemma 3.5. Let T be a TBox T , D a DBox, and C, D be concepts, with sig(X) ∩ Naux
C = ∅ for X ∈

{T ,D, C,D}. Then435

D u C vT D iff CD vTD(C) D.

Proof (sketch). The lemma is proven by induction on the size of D. The base case is D = ∅ and thereby
Prop. 3.4 holds. For the induction step, let D′ = D ∪ {G @∼ H} and use the hypothesis that the claim holds
for D. We do a case distinction for (i) D u C v G and (ii) D u C 6v G. For case (i), it can be shown that
reasoning with C uH, yields the same consequences as reasoning with C. All elements in C uH satisfying440

G, already satisfy H. Thus we can remove the introduced DCI G @∼ H without losing any consequences.
Hence, G @∼ H can be removed from D′ and the induction hypothesis holds. In case (ii) we show that the
added DCI has no effect on the reasoning. By the condition of this case, no element in C, satisfying all
DCIs in D, satisfies G. Therefore, the presence of the DCI G @∼ H does not affect the reasoning allowing it
to be removed in order to reduce the induction step to the induction hypothesis. In both cases, both sides445

of the “iff ” in the claim are reduced to their respective sides of the induction hypothesis individually. The
full proof is fairly long and technical and the interested reader is referred to [20]. �

Lemma 3.5 directly implies that after determining D′ = consx(D, C) (for querying C @∼ D under the
strength x), both, the materialisation and the TBox extension approach are capable to produce the same
reasoning results w.r.t. D′. This naturally shows that materialisation-based rational reasoning remains450

polynomial for EL⊥ DKBs, which is not a trivial consequence of the approach in [4]. Note that, for computing
rational closure, the consistency of Di is checked in [4] using materialisation as well. In order to remain
entirely in EL⊥, the consistency check Di u C vT ⊥ needs to be reformulated to CDi vTDi (C) ⊥ which
clearly yields the same result by Lemma 3.5. For relevant closure, DC is simply determined by appropriate
justification algorithms as a preprocessing step to both approaches, hence allowing the same results under455

relevant closure, though the computational complexity is dominated by the computation of all justifications
[18, 19].

3.2.2. Defeasible Instance Checking by Materialisation Adapted to EL⊥
Here we develop an algorithm that yields the same results as the algorithm from [4], but using EL⊥ only.

Our algorithm proceeds by extending the TBox by auxiliary concepts which encode the DCIs from the input460

DBox D. These concepts are used to assert in A that individuals satisfy the corresponding DCI. Introduce
fresh concept names DE@∼F

∈ Naux
C and let TD = {DE@∼F

u E v F | E @∼ F ∈ D}. Clearly, T ∪TD is a
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conservative extension of T , thus if sig(C,D) ⊆ sig(T ) then C vT D iff C vT ∪TD D follows. While the
algorithm from [4] extends the ABox by assertions of the form (¬E t F )(a), our algorithm extends A by
assertions of the form DE@∼F

(a), ensuring that the GCI DE@∼F
u E v F “can trigger” for the individual a.465

It is important to note that our algorithm for EL⊥ does not require the restrictions on A and T that are
imposed in [4] and is thus more general.

Next, we show that a knowledge base that contains a materialisation-based extension of the ABox can
be translated into an equivalent EL⊥ KB using the GCIs and the concept assertions just mentioned. To
address these two kinds of extensions of ABoxes, we introduce some notation. For a given set of DCIs D,470

an individual a and fresh concept names DE@∼F
, define

• AaD = {(¬E t F )(a) | E @∼ F ∈ D}, and

• ÂaD = {DE@∼F
(a) | E @∼ F ∈ D}.

Lemma 3.6. Let K = (A, T ) be a classical EL⊥ KB, D be a DBox, C a concept with sig(C) ⊆ sig(A, T ),
b ∈ sigI(A) an individual, and Π : sigI(A) → 2D a function. Then the following two statements are475

equivalent

1. (A ∪
⋃
a∈sigI(A)AaΠ(a), T ) |= C(b)

2. (A ∪
⋃
a∈sigI(A) ÂaΠ(a), T ∪ TD) |= C(b).

Proof. The size of the function Π is defined as |Π| =
∑
a∈sigI(A) |Π(a)|. We prove the claim by induction

on |Π|. The base case for |Π| = 0 assigns Π(a) = ∅ for all a ∈ sigI(A), it follows that AaΠ(a) and ÂaΠ(a)480

are empty. Since T ∪TD is a conservative extension of T , the claim holds for sig(C) ⊆ sig(A, T ). For the
induction hypothesis, let |Π| = n and assume the claim holds for Π. In the induction step there is some
a ∈ sigI(A), s.t. Π′(a) = Π(a)∪{E @∼ F} (where E @∼ F 6∈ Π(a)) and for all b ∈ sigI(A) b 6= a, Π′(b) = Π(b).
Clearly |Π′| = |Π| + 1 and AaΠ′(a) = AaΠ(a) ∪ {(¬E t F )(a)} as well as AbΠ′(b) = AbΠ(b) for b 6= a (analogous
for ÂaΠ′(a)). We show in the induction step (IS) that the following statements are equivalent for arbitrary b485

1. (A ∪
⋃
b∈sigI(A)AbΠ(b) ∪ {(¬E t F )(a)}, T ) |= C(b)

2. (A ∪
⋃
b∈sigI(A) ÂbΠ(b) ∪ {DE@∼F

(a)}, T ∪ TD) |= C(b)

We distinguish two cases, depending on whether E(a) is entailed or not.

Case 1: (A∪
⋃
b∈sigI(A)AbΠ(b), T ) |= E(a). By IH, this is equivalent to (A∪

⋃
b∈sigI(A) ÂbΠ(b), T ∪TD) |= E(a).

Monotonicity of classical reasoning implies (A∪
⋃
b∈sigI(A)AbΠ(b) ∪ {(¬E tF )(a)}, T ) |= E(a) and therefore490

the knowledge base (A ∪
⋃
b∈sigI(A)AbΠ(b) ∪ {(¬E t F )(a)}, T ) has exactly the same models as

(A ∪
⋃

b∈sigI(A)

AbΠ(b) ∪ {F (a)}, T ).

Since no restrictions (other than using EL⊥ syntax) were imposed on the ABox A, the induction hypothesis
holds also when using the ABox A∪{F (a)}.

Towards reducing Statement 2 of the induction step (IS) to the induction hypothesis, monotonicity and
the case assumption imply (A∪

⋃
b∈sigI(A) ÂbΠ(b)∪{DE@∼F

(a)}, T ∪TD) |= E(a). Since DE@∼F
uE v F ∈ TD, it495

follows that the same knowledge base also entails F (a). Therefore, (A∪
⋃
b∈sigI(A) ÂbΠ(b)∪{DE@∼F

(a)}, T ∪TD)

has exactly the same models as (A ∪
⋃
b∈sigI(A) ÂbΠ(b) ∪ {F (a)}, T ∪ TD) which reduces Statement 2 of (IS)

to the IH using the ABox A∪{F (a)} which shows equivalence of 1 and 2 (IS) in Case 1.

Case 2: (A∪
⋃
b∈sigI(A)AbΠ(b), T ) 6|= E(a). This is equivalent to (A∪

⋃
b∈sigI(A) ÂbΠ(b), T ∪ TD) 6|= E(a) by

IH. We show that the extension in Π′ has no influence on the entailed consequences. The added assertion500
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can therefore be removed without changing the set of models, allowing to directly apply the induction
hypothesis. Towards the reduction of 1 in (IS) to the hypothesis, we show that

(A ∪
⋃

b∈sigI(A)

AbΠ(b) ∪ {(¬E t F )(a)}, T ) |= C(b) iff (A ∪
⋃

b∈sigI(A)

AbΠ(b), T ) |= C(b).

The if direction follows trivially from monotonicity of classical reasoning. For the only-if direction as-
sume for a contradiction that (A ∪

⋃
b∈sigI(A)AbΠ(b), T ) 6|= C(b). Then, there must be a model I of

(A ∪
⋃
b∈sigI(A)AbΠ(b), T ) s.t. bI 6∈ CI and by the case assumption a model J of (A ∪

⋃
b∈sigI(A)AbΠ(b), T )505

s.t. aJ 6∈ EJ . Since models of EL⊥ knowledge bases are closed under product, I×J is a model of the same
KB s.t. neither C(b) nor E(a) are satisfied in I×J . I×J clearly satisfies (¬E t F )(a) and is therefore a
model of (A ∪

⋃
b∈sigI(A)AbΠ(b) ∪ {(¬E t F )(a)}, T ) contradicting our assumption (A ∪

⋃
b∈sigI(A)AbΠ(b) ∪

{(¬E t F )(a)}, T ) |= C(b).
Towards the reduction of 2 in (IS) to the induction hypothesis, we show that510

(A ∪
⋃

b∈sigI(A)

ÂbΠ(b) ∪ {DE@∼F
(a)}, T ∪ TD) |= C(b) iff (A ∪

⋃
b∈sigI(A)

ÂbΠ(b), T ∪ TD) |= C(b).

The if direction is again trivial by monotonicity and we prove the only-if direction by a contradiction.
Assume (A ∪

⋃
b∈sigI(A) ÂbΠ(b), T ∪ TD) 6|= C(b). Again, by the closure of models for EL⊥ knowledge bases

under cross-product, there exists a model I of (A ∪
⋃
b∈sigI(A) ÂbΠ(b), T ∪ TD) s.t. I 6|= E(a) and I 6|= C(b).

Let J = I[DE@∼F
/DIE@∼F

∪ {aI}]. Since DE@∼F
only appears in T ∪ TD in the GCI DE@∼F

uE v F , it is not
hard to see that515

• J |= A ∪
⋃
b∈sigI(A) ÂbΠ(b),

• J |= DE@∼F
(a), and

• J |= (T ∪ TD) \ {DE@∼F
u E v F}

hold. It also follows from the construction of J , that XJ = XI for EL⊥ concepts X with DE@∼F
6∈ sig(X).

Therefore, aJ 6∈ EJ implies (DE@∼F
u E)J = (DE@∼F

u E)I (as well as FJ = F I), showing520

J |= (A ∪
⋃

b∈sigI(A)

ÂbΠ(b) ∪ {DE@∼F
(a)}, T ∪ TD).

Now, J 6|= C(b) contradicts the premise of the only-if direction. From the result that the extension of the
ABox has no effect on the set of entailments (in both sides), it follows that reasoning is equivalent to using
the induction hypothesis, which proves the induction step to be true under Case 2. �

By Lemma 3.6, we know, given the analogous materialisation-based extensions of the ABox (for ALC and
EL⊥), that classical instance checking, if applied to EL⊥ KBs, using both ABox extensions respectively,525

provides the same results. It remains to introduce an algorithm that computes the default assumption
extension ABox from an EL⊥ DKB K = (A, T ,D) by means of classical reasoning in EL⊥. This algorithm
does not require the restrictions on the TBox or the ABox as in the algorithm from [4]. We only assume
w.l.o.g. that no conjunction appears on the top-level of concepts in the ABox to simplify notation. We
denote by Âsrat the ABox obtained from Algorithm 1 for the input K = (A, T ,D) and the sequence s on530

sigI(A).
The following lemma shows for materialisation-based rational instance checking for EL⊥ KBs (under the

restrictions imposed on A and T in [4]) equivalence between using ALC for syntax and reasoning as in [4]
and using EL⊥ for syntax and reasoning as introduced above. One can easily produce an example using a
general TBox and a (conjunction-free) ABox which cannot be processed by the procedure introduced in [4].535

15



Algorithm 1: Computation of default assumption extension Âsrat
Input: K = (A, T ,D) (A is conjunction-free), sequence (a1, . . . , an) of all individuals in A,

partition(D) = (E0, . . . , Em)

Output: Default assumption extension Âsrat
1 for ai in (a1, . . . , an) do
2 for Ej in (E0, . . . , Em) do
3 Dj :=

⋃m
k=j Ek

4 if
(
A ∪ {DE@∼F

(ai) | E @∼ F ∈ Dj}, T ∪ TD
)
is consistent then

5 A := A ∪ {DE@∼F
(ai) | E @∼ F ∈ Dj}

6 exit loop
7 end
8 end
9 end

10 return A

Lemma 3.7. Let K = (A, T ,D) be an EL⊥ DKB, with a complete ABox A and an unfoldable TBox T . Let
Asrat and Âsrat be default assumption extensions, and C be an EL⊥ concept with sig(C) ⊆ sig(K). Then the
following holds

K, s |=(rat,mat) C(a)⇐⇒ (Âs, T ∪ TD) |= C(a).

Proof. By definition, K, s |=(rat,mat) C(a) holds iff Asrat |= C(a) by classical semantics. Let Asrat = A]A′
be the ABox extension as obtained from the algorithm described in [4], where A′ contains only assertions540

of the form (¬E t F )(a) for E @∼ F ∈ D and a ∈ sigI(A). If T is an unfoldable TBox, A a complete
ABox unfolded w.r.t. T and D a DBox unfolded w.r.t. T , then (Asrat, ∅) |= C(a) iff (Asrat, T ) |= C(a)
holds and is not hard to check. It is obvious that the two for-loops in Algorithm 1 in Lines 1 and 2 are
the same as in the Algorithm in [4]. Within those for-loops, a set of potential assertions is considered for
extending the ABox in both algorithms. Let this set be A1 in Algorithm 1 and A2 in the Algorithm in545

[4]. Since both algorithms use the same sequence (a0, . . . , an) and the same partition(D) and thus the same
sequence (E0, . . . , Em), it holds that DE@∼F

(a) ∈ A1 iff (¬E t F )(a) ∈ A2. Both algorithms proceed with a
consistency check for the extension of the current ABox with the potential extension A1, A2 (resp.). This
consistency check has the same outcome in every iteration (for both for-loops), due to Lemma 3.6 and the
inductive nature of the extension algorithms. It follows that for the final ABox extensions Asrat = A ] A′550

and Âsrat = A]A′′, that (¬EtF )(a) ∈ A′ iff DE@∼F
(a) ∈ A′′. Then we can apply Lemma 3.6 and it follows

that (Asrat, T ) |= C(a) iff (Âsrat, T ∪ TD) |= C(a). �

With Lemma 3.7 we have shown that the Algorithms for deciding instance checking in defeasible EL⊥ (w.r.t.
the imposed restrictions) under rational closure from [4] and the one developed in this subsection yield the
same answers. Unfortunately the combination of unfoldable TBoxes and EL⊥ syntax is very restrictive, i.e.555

disjointness C uD v ⊥ cannot be expressed in T , hence the consistency checks in the algorithms and thus
the construction of Asrat and Âsrat immediately become trivial.

In this section we have developed algorithms for deciding subsumption under rational and minimal relevant
closure and instance checking under rational closure by a reduction to classical EL⊥ reasoning. For rational
closure, both reductions are polynomial in the size of the DKB, whereas for subsumption under minimal560

relevant closure, the computational complexity is dominated by the computation of justifications. Instance
checking under relevant closure was never discussed prior to this article (c.f. Section 5). This confirms the
claim from Casini et al. in [4] that defeasible reasoning does not add computational complexity even for
sub-Boolean DLs: our reduction shows that reasoning for defeasible EL⊥ remains polynomial (for rational
closure). Besides this pleasing result, this algorithm still bears the deficits regarding defeasible information565
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for the (nested) role successors diagnosed in Section 3.1.1 for the materialisation-based approach. This
deficit is what we remedy by reasoning w.r.t. a new kind of interpretation.

4. Typicality Interpretations for Deciding Defeasible Subsumption

In this section we investigate defeasible subsumption in several settings. Again we denote the considered
semantics by a pair over strength and coverage, i.e., a pair from570

{rat, rel} × {prop, nest},

where, for instance, (rat, prop) refers to rational semantics of propositional nature and (rel, nest) refers to
relevant semantics including defeasible entailments for nested existential restrictions. We consider entail-
ments obtained by materialisation to be of propositional nature w.r.t. defeasible information.6 Now, since
the use of roles (to characterise concepts) is the main asset of DLs, a KLM-style non-monotonic system for575

DLs, should allow for defeasible conclusions in nested concepts. There are now 4 combinations from {rat,
rel} × {prop, nest} to be investigated for subsumption which we address in the following order. First we
investigate the simple inferences of propositional coverage and then extend it to nested coverage. Since the
techniques and theoretical results required for relevant semantics are a generalisation of those needed for
rational semantics, we start by investigating the general case of relevant reasoning.580

Canonical models for classical EL have domain elements as representatives for concepts and individ-
uals from the KB. To extend this kind of model to defeasible variants of EL, the idea is to use concept
or individual representatives that satisfy different sets of defeasible concept inclusions and thus represent
different “amounts of typicality”. Our goal is to construct the models such that the defeasible subsumption
relationships that follow under the chosen semantics can be directly read-off from the model. We define585

such models and show some of their properties in preparation of the investigations for the four varieties of
defeasible subsumption.

4.1. Introducing Typicality Interpretations
The kind of interpretations we introduce has domains essentially structured by a 2-dimensional grid,

where one dimension are the representatives for concepts and individuals and the second dimension captures590

sets of DCIs from the DBox and thus represent different amounts of typicality. Depending on the strength of
reasoning considered, different subsets of the DBox are used in such a typicality interpretation. In typicality
interpretations only those points in the grid are instantiated by elements, where the combination of the
concept and the DBox subset are a consistent combination. Observe that this kind of models also captures
the classical case, i.e., if the DBox is empty, then the second dimension has only one entry: the empty set.595

This “level of no typicality” is included in every typicality model.
We define typicality interpretations formally. In order to cater for different strengths of reasoning in the

semantics, we distinguish different structures of how the subsets from D relate to each other; this determines
the “shape of the interpretation domain”.

Definition 4.1. Let K = (A, T ,D) be a DKB. The domain ∆K is a typicality domain over K if all domain600

elements are of the form da or dUF , where

• a ∈ sigI(A),

• F ∈ Qc(K),

• U ⊆ D, and

• {d∅F | F ∈ Qc(K)} ⊆ ∆K.605

6This observation is somewhat supported by the translation of propositional KLM postulates to DL syntax without con-
sidering quantified concepts in [4].
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The set of represented subsets of D in ∆K is Γ(∆K) = {U ⊆ D | ∃dUF ∈ ∆K}. The shape of a typicality
domain is that of a

• chain, if Γ(∆K) is totally ordered by ⊆,

• lattice, if no further restrictions are imposed on Γ(∆K).

A typicality domain consists of only two types of domain elements: concept representatives are associated610

with an EL⊥ concept and a subset of the DBox (e.g. dUF ) and individual representatives are associated with
an individual from the ABox.

Definition 4.2. An interpretation I = (∆K, ·I), where ∆K is a typicality domain over some DKB K, is a
typicality interpretation.

We single out those typicality interpretations whose representatives of a concept really are in the extension615

of that concept and elements that belong to existential restrictions really have the required role-successor
(in the required concept) and on the level of no typicality. Thus such a role-successor satisfies at least the
TBox.

Definition 4.3. A typicality interpretation I = (∆K, ·I) over a DKB K = (A, T ,D) is called standard iff

1. dUF ∈ F I for F ∈ Qc(K) and U ⊆ D,620

2. d ∈ (∃r.E)I =⇒ (d, d∅E) ∈ rI for E ∈ Qc(K), d ∈ ∆K

Notice that Condition 2 considers any domain element d, hence d could either be a concept representative
or an individual representative. A crucial consequence for standard typicality interpretations is that they
are well-behaved regarding intersections of interpretations (Definition 2.2).

Proposition 4.4. Let I = (∆K, ·I) and J = (∆K, ·J ) be typicality interpretations over the DKB K.625

1. I ⊆ J implies CI ⊆ CJ for all EL⊥ concepts C,.

2. If I and J are standard, then CI∩J = CI ∩ CJ for all EL⊥ concepts C with Qc(C) ⊆ Qc(K).

Proof. We prove Claim 1 by induction on the structure of C. The induction start C = A (A ∈ NC) follows
by definition of ⊆ for interpretations over a shared domain and is trivial for C = ⊥. Assume EI ⊆ EJ and
F I ⊆ FJ . It is clear that (E u F )I ⊆ (E u F )J . For C = ∃r.E, the premise I ⊆ J implies rI ⊆ rJ and
together with the induction hypothesis we obtain

(∃r.E)I = {d ∈ ∆K | ∃(d, e) ∈ rI .e ∈ EI}
⊆ {d ∈ ∆K | ∃(d, e) ∈ rJ .e ∈ EJ }
= (∃r.E)J .

We show Claim 2 also by induction on the structure of C. The case of C = A (A ∈ NC) follows from the
definition of I∩J , i.e. AI∩J = AI∩AJ and for C = ⊥ the claim trivially holds. Assume XI∩J = XI∩XJ
(X ∈ {E,F}) and let C = E u F . Then

(E u F )I∩J = EI∩J ∩ F I∩J

= EI ∩ EJ ∩ F I ∩ FJ by induction hypothesis

= (E u F )I ∩ (E u F )J

For C = ∃r.E the following equations are true since rI∩J = rI ∩ rJ :

(∃r.E)I∩J = {d ∈ ∆K | ∃(d, e) ∈ rI∩J .e ∈ EI∩J }
= {d ∈ ∆K | ∃(d, e) ∈ rI ∩ rJ .e ∈ EI ∩ EJ } (†)
= {d ∈ ∆K | ∃(d, e) ∈ rI .e ∈ EI} ∩ {d ∈ ∆K | ∃(d, e) ∈ rJ .e ∈ EJ } (‡)
= (∃r.E)I ∩ (∃r.E)J
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The inclusion ⊆ from (†) to (‡) is easy to see while the other direction ⊇ requires the extra conditions
of I, J being standard typicality interpretations and Qc(C) ⊆ Qc(K). Assume dUF ∈ (∃r.E)I ∩ (∃r.E)J ,
then Qc(C) ⊆ Qc(K) implies d∅E ∈ ∆K and the fact that I, J are standard implies (dUF , d

∅
E) ∈ rI and630

(dUF , d
∅
E) ∈ rJ as well as d∅E ∈ EI and d∅E ∈ EJ . It is now easy to see that (dUF , d

∅
E) ∈ rI∩J and d∅E ∈ EI∩J

and thus dUF ∈ (∃r.E)I∩J . �

It follows trivially from Proposition 4.4 that standard typicality interpretations over a shared domain are
closed under intersection.

Corollary 4.5. Let I = (∆K, ·I) and J = (∆K, ·J ) be standard typicality interpretations. Then I ∩J is a635

standard typicality interpretation.

4.1.1. Defeasible Entailments by Typicality Interpretations
To define the different forms of entailment for the different semantics, we need the notion of a model and

characterise under which conditions a typicality interpretation satisfies a DKB. For the classical parts (ABox,
TBox), the typicality interpretation should comply with the standard semantics. Concept representatives640

that are associated with a subset of the DBox, should satisfy the DCIs in that subset.

Definition 4.6 (model of K). Let K = (A, T ,D) be a DKB. A typicality interpretation I = (∆K, ·I) over
K is a model of K (written I |= K) iff

1. I |= (A, T ) and

2. I, dUF |= U for all dUF ∈ ∆K.645

Definition 4.6 characterises basic conditions under which a DKB is satisfied. In classical semantics,
entailments are determined by all models of a given knowledge base. For the non-monotonic semantics
that we want to obtain, we use preferred models and impose further restrictions on the set of models
of a DKB that are considered to determine entailment. More precisely, we want to investigate the four
different semantics, characterised by (x, y) ∈ {rat, rel} × {prop, nest}. The semantics for the strength650

of the entailment (i.e., the first component of this pair) are obtained when restricting the set of models
of K to those over one specific domain ∆Kx . The second component imposes further restrictions on those
models. For typicality interpretations, we also need to specify when an assertion or a DCI is satisfied,
e.g. I |= C @∼ D. Due to the canonical nature of typicality interpretations, entailments (subsumption and
instance alike) can be determined by considering single domain elements. Which domain element is selected655

to decide a subsumption query depends on the underlying typicality domain which in turn depends on the
strength of the desired semantics. Thus we obtain a general characterisation of defeasible entailment with
recourse to (i) the set of preferred models and (ii) conditions under which a typicality interpretation satisfies
a DCI or assertion w.r.t. x. These are made precise later, but we can characterise entailment of a defeasible
query by a DKB K in general. Let660

• α be an EL⊥ expression of the form C @∼ D or C(a) (a ∈ sigI(A)),

• I |=x α be defined for x ∈ {rat, rel} and

• the set of preferred models of K: Mod(x,y)(K) that are considered in the decision process is to be
defined for (x, y) ∈ {rat, rel} × {prop, nest}.

Entailment of a defeasible query α by a DKB K is characterised as665

K |=(x,y) α iff I |=x α for all models I ∈Mod(x,y)(K). (?)

A requirement for the preferred models of K is that Mod(x,y) contains only standard models of K.
This restriction is required for all pairs (x, y). Before considering characterisations regarding concrete
instantiations of the components x and y of our semantics, we use this initial restriction to standard models
and Corollary 4.5 to characterise a single model that is canonical for the set of all standard models over a
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typicality domain ∆K. Note that up to this point we considered both, defeasible instance and subsumption670

checking, simply because the general characterisations of these entailments align so well.
From here we restrict our investigations to subsumption checking, where the ABox has no effect.7 The

main difference between classical canonical models and typicality interpretations is the multitude of concept
representatives per concept, which entitles the use of the extended TBox introduced in Definition 3.3 in order
to determine materialisation-like entailments based on defeasible information for the appropriate domain675

elements.

Definition 4.7. Let K = (T ,D) be a DKB, ∆K a typicality domain over K, and U ⊆ D. A typicality
interpretation I = (∆K, ·I) is a minimal typicality model (denoted as I(∆K)) if

• it satisfies the property:
dUF ∈ ∆K ⇐⇒ FU 6vTU (F ) ⊥ (∗)

• its interpretation mapping satisfies the following conditions for all dUF ∈ ∆K:680

– dUF ∈ AI(∆K) iff FU vTU (F ) A, for A ∈ sigC(K) and

– (dUF , d
∅
G) ∈ rI(∆K) iff FU vTU (F ) ∃r.G, for r ∈ sigR(K).

Definition 4.7 is general in the sense that no specific typicality domain is fixed, which determines the
strength of the semantics in the x ∈ {rat, rel} component. We show in the following, that minimal typicality
models I(∆K) are canonical for the standard models of K in the sense that685

1. I(∆K) |= K,

2. I(∆K) is standard, and

3. for all J = (∆K, ·J ) satisfying 1 and 2, I(∆K) ⊆ J .

The following intermediary result aligns with the considerations for classical canonical models.

Proposition 4.8. For a given well–separated DKB K = (T ,D) and the minimal typicality model I(∆K)690

for a typicality domain ∆K , the following holds for all dUF ∈ ∆K:

1. dUF ∈ F
I(∆K)
U

2. dUF ∈ GI(∆K) iff FU vTU (F ) G

Proof. Claim 1 is trivial since FU ∈ NC and by Property (∗) in Definition 4.7, dUF ∈ ∆K ⇐⇒ FU 6vTU (F ) ⊥.
We show 2 by induction on the structure of G. The base case, where G = A (A ∈ NC) follows by695

Definition 4.7 as FU ∈ NC . The cases for G = > and G = ⊥ are both trivial. Assume the property
holds for two concepts D and E, the case of the induction step where G = D u E follows quickly from
the semantics of conjunction and the induction hypothesis. It remains to show the induction step for
G = ∃r.E under the hypothesis dU

′

X ∈ EI(∆K) ⇐⇒ XU ′ vTU′ (X) E for any dU
′

X ∈ ∆K. dUF ∈ GI(∆K) implies
∃d∅X ∈ ∆K.(dUF , d

∅
X) ∈ rI(∆K) ∧ d∅X ∈ EI(∆K). By Definition 4.7 this implies FU vTU (F ) ∃r.X. By IH,700

d∅X ∈ EI(∆K) ⇐⇒ X∅ vT∅(X) E and thus, by Proposition 3.4 X vT E for a well–separated K. Thus
T ⊆ TU (F ) implies FU vTU (F ) ∃r.E. For the other direction, let FU vTU (F ) ∃r.E, 1 directly implies that

dUF ∈ F
I(∆K)
U and thus dUF ∈ (∃r.E)I(∆K) = GI(∆K). �

Proposition 4.8 is the main ingredient for showing that a minimal typicality model I(∆K) from Definition
4.7 is in fact a model of the given DKB K according to Definition 4.6. As a consequence of 1 in Proposition705

4.8 and Definition 4.7, it directly follows that I(∆K) is standard.

7Once the ABox A is eventually considered again, all of the definitions and results below apply just the same.
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Lemma 4.9. Let K = (T ,D) be a DKB. Then, the minimal typicality model I(∆K) of a typicality domain
∆K is a model of K.

Proof. We need to show that 1 and 2 of Definition 4.6 hold for I(∆K).

1. For all GCIs G v H ∈ T and any dUF ∈ ∆K, dUF ∈ GI(∆K) iff FU vTU (F ) G by Proposition 4.8 and710

T ⊆ TU (F ) implies FU vTU (F ) H, which again by Proposition 4.8 holds iff dUF ∈ HI(∆K).

2. For 2 of Definition 4.6 we can use a similar argument. For all dUF ∈ ∆K and G @∼ H ∈ U we need to
show dUF ∈ GI(∆K) =⇒ dUF ∈ HI(∆K). dUF ∈ GI(∆K) is equivalent to FU vTU (F ) G due to Proposition
4.8, which implies FU ≡TU (F ) FU u G. G @∼ H ∈ U implies FU u G v H ∈ TU (F ), thus FU vTU (F ) H

which is again equivalent to dUF ∈ HI(∆K) by Proposition 4.8. �715

Using this result and Prop. 3.4, it is not hard to show that a minimal typicality model, restricted to elements
regarding the empty set of DCIs, yields exactly the classical canonical model for the EL⊥ TBox T .

Before we show canonicity of a minimal typicality model w.r.t. standard models of K over the same
domain, we show an intermediary result connecting satisfaction of K to satisfaction of extended TBoxes
TU (F ).720

Proposition 4.10. Let K = (T ,D) be a DKB, F a concept, and J = (∆K, ·J ) be a standard typicality
interpretation over K. Then it holds that

J |= K =⇒ ∀dUF ∈ ∆K.J [FU/{dUF }] |= TU (F )

Proof. Let J ′ = J [FU/{dUF }] for simplicity and dUF ∈ ∆K. Clearly, since FU 6∈ sig(T ) it holds that J |= T
implies J ′ |= T . Since J is standard, dUF ∈ FJ holds by Definition 4.3, which implies {dUF } = FJ

′

U ⊆ FJ
′

(since FU 6∈ sig(F )). It remains to show for all GCIs FU u G v H ∈ TU (F ) \ (T ∪ {FU v F}) (i.e.725

G @∼ H ∈ U) that J ′ |= FU u G v H. Since FU 6∈ sig(D), it holds that GJ = GJ
′
and HJ = HJ

′
.

Additionally, for all dUF ∈ ∆K it holds that J , dUF |= U (J |= K), which means for all G @∼ H ∈ U , that
dUF ∈ GJ =⇒ dUF ∈ HJ (Def. 4.6). Thus, {dUF } = FJ

′

U implies dUF ∈ GJ iff dUF ∈ (FU u G)J
′
, it follows

that dUF ∈ (FU u G)J
′

=⇒ dUF ∈ HJ
′
which implies J ′ |= FU u G v H, since no other element than dUF

may be in the extension of the left-hand side of such a GCI in TU (F ) under J ′. �730

Equipped with this result, we show that the minimal typicality model I(∆K) is canonical for the set of all
standard models of K over the domain ∆K.

Lemma 4.11. The minimal typicality model I(∆K) is canonical for all standard models J = (∆K, ·J ) of
the DKB K = (T ,D), i.e. the following properties hold

1. I(∆K) |= K,735

2. I(∆K) is standard, and

3. I(∆K) ⊆ J for all standard models J = (∆K, ·J ) of K.

Proof. Property 1 is known by Lemma 4.9 and Property 2 follows from Proposition 4.8 and the definition of
minimal typicality model (Def. 4.7). To show Property 3, assume for contradiction that there is a standard
model J = (∆K, ·J ) of K that is not an extension of I(∆K), i.e. I(∆K) 6⊆ J . The latter requires that740

there exists at least one concept or role name, s.t. AI(∆K) 6⊆ AJ or rI(∆K) 6⊆ rJ , respectively. Hence, we
distinguish the following two cases, both leading to contradictions.

Case 1: ∃A ∈ sigC(K).AI(∆K) 6⊆ AJ . There must be an element dUF ∈ AI(∆K) \AJ . dUF ∈ AI(∆K) implies
FU vTU (F ) A by Definition 4.7. By Proposition 4.10 it follows from J |= K and J being standard, that
J [FU/{dUF }] |= TU (F ), which cannot be the case since J [FU/{dUF }] 6|= FU vTU (F ) A.745
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Case 2: ∃r ∈ sigR(K).rI(∆K) 6⊆ rJ . There must be a pair (dUF , d
∅
G) ∈ rI(∆K) \ rJ due to the definition of

I(∆K). From Definition 4.7 it follows that FU vTU (F ) ∃r.G. Since J is standard, it follows from Definition
4.3 that (dUF , d

∅
G) 6∈ rJ implies dUF 6∈ (∃r.G)J . Using the same argument as in the previous case, we know that

J [FU/{dUF }] |= TU (F ), which is a contradiction to the assumption because J [FU/{dUF }] 6|= FU vTU (F ) ∃r.G
(since FU 6∈ sig(G)). �750

Lemma 4.11 justifies to read facts off from a minimal typicality model and use them as entailments,
i.e. as formulas that have to hold for all standard typicality models of a given DKB. We are now ready to
obtain concrete semantics for instantiations of our framework, in particular, semantics for (rat, prop) and
(rel, prop), simply by fixing specific typicality domains and defining the specific condition for a subsumption
to hold in the respective typicality interpretation.755

4.2. Propositional Subsumption Entailment
To develop a decision procedure for defeasible subsumption for propositional coverage, we use so-called

“minimal typicality” models as introduced in the last subsection. The idea is that all role-successor elements
are from the level of no typicality (e.g. d∅F ) and thus do not need to fulfil any information from the DBox.
This realises propositional coverage of defeasible information as this kind of information stays local to role760

predecessors.

4.2.1. Propositional Relevant Subsumption
To fully instantiate the characterisation of defeasible entailment given in (?) (on page 19), we need to

specify the preferred models together with their domain and the conditions under which an interpretation
satisfies a GCI or assertion.765

Definition 4.12 (Relevant Domain). Let K be a DKB. The relevant domain ∆Krel over the K is defined
as ∆Krel = {dUF | F ∈ Qc(K),U ⊆ D, F u U 6vT ⊥}.

Observe that relevant domains have a lattice shape (according to Definition 4.1). By our initial assumption,
that all concepts in Qc(K) are consistent with the TBox, it is guaranteed that ∆Krel is a typicality domain
according to Definition 4.1. Furthermore, ∆Krel satisfies the Property (∗) required by Definition 4.7 for a770

minimal typicality model. The following example illustrates the minimal typicality model for the previously
used DKB Kex1.

Example 4.13 (Minimal relevant typicality model). Consider again the DKB Kex1 from Example 3.2
with the consistent subsets of the DBox DWorker = Dex1, and DBoss = {Worker @∼ Productive, Boss @∼
Responsible} w.r.t. Worker and Boss, respectively. The subset-lattice of Dex1 and I(∆Kex1rel ) are illustrated775

in Figure 1 using obvious abbreviations and omitting labels for clarity. Note, that the domain elements are
grouped in grey boxes according to the subset-lattice indicating which DBox subsets are satisfied by which
domain elements.

According to Definition 4.14, I(∆Kex1rel ) |= Worker @∼ ∃superior.Boss, as well as I(∆Kex1rel ) |= Boss @∼
Responsible u Productive, because dDWorker

Worker and dDBossBoss satisfy DWorker and DBoss, respectively.780

As the second component in specifying concrete semantics, we need to determine the conditions for
I |=x C @∼ D. Since minimal typical modes are canonical models, one needs to find the representative
element in ∆Krel, that is most typical w.r.t. the concept it represents and thus fulfilling as much defeasible
information as possible. In general the most typical concept representative element dUF of a concept F
cannot be determined by the maximal cardinality of U for all representatives of F in ∆Krel. To clarify this,785

consider the relevant domain ∆Krel that contains two elements dU1F and dU2F with |U1| = |U2|, U1 6= U2 and no
element dUF with |U| > |U1| is contained in ∆Krel. In this scenario, it is not clear which of the DBox subsets
that are consistent with F and maximal by cardinality are to be used for deciding subsumption. In order
to align our semantics with the entailments contained in minimal relevant closure in [8], the most typical
representative of a concept F is defined as dDFF , where DF is determined by means of justification (see790

Subsection 3.1 on page 10). Conditions for a typicality interpretation over the relevant domain to satisfy a
defeasible subsumption is then characterised as follows.
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Definition 4.14 (Defeasible subsumption under relevant strength, |=rel).
Let I be a typicality interpretation over the relevant domain ∆Krel. Then I satisfies a defeasible subsumption
C @∼ D (written I |=rel C @∼ D) iff dDCC ∈ DI .795

Note that the domain element chosen in Definition 4.14 (likewise in Definition 4.19) to determine satisfaction
of a defeasible subsumption, determines, together with the shape of the underlying typicality domain, the
strength of the resulting semantics. The coverage of the resulting semantics is determined by the set of
models of K that are considered to decide defeasible entailments. We can now define entailment under the
semantics characterised by (rel, prop) in accordance to the general entailment characterisation in (?).800

Definition 4.15. Let K be a DKB. The typicality interpretations I ∈Mod(rel,prop) that are considered in
defining entailments based on propositional relevant semantics satisfy the following properties:

1. I is standard,

2. I uses the relevant domain ∆Krel.

A defeasible knowledge base K = (T ,D) entails a defeasible subsumption C @∼ D under propositional relevant805

semantics (written K |=(rel,prop) C @∼ D) iff I |=rel C @∼ D for all I ∈Mod(rel,prop)(K).

As a consequence of Lemma 4.11, we can characterise propositional relevant entailment of subsumption
using the minimal typicality model over the relevant domain ∆Krel, i.e.

K |=(rel,prop) C @∼ D iff I(∆Krel) |=rel C @∼ D.

We are now ready to show equivalence of materialisation-based reasoning as described in [8], restricted
to the DL EL⊥ and propositional relevant semantics given by standard typicality models.810

Theorem 4.16. Let K be an EL⊥ DKB. Propositional relevant entailment coincides with materialisation-
based relevant entailment, i.e.

K |=(rel,prop) C @∼ D ⇐⇒ K |=
(rel,mat) C @∼ D.

Proof. From Definition 4.15 and Lemma 4.11 we know that K |=(rel,prop) C @∼ D can be decided by I(∆Krel),
i.e. dDCC ∈ DI(∆Krel). Proposition 4.8 shows that this is equivalent to deciding CDC vTDC (C) D. From Lemma
3.5 this is in turn equivalent to DC u C vT D, which is precisely the definition of K |=(rel,mat) C @∼ D.815

A direct consequence and main motivation for this result, is that the same KLM postulates as discussed in
[8] also hold for propositional relevant entailment. As we show next, this is even the case for the inferentially
weaker propositional rational semantics.

B @∼ R
W @∼ P ,
W @∼ ∃s.B,

B @∼ R
W @∼ P ,

B @∼ R
W @∼ ∃s.B,

W @∼ P
W @∼ ∃s.B,

B @∼ R W @∼ P W @∼ ∃s.B

∅

DW
W

DB
W B W W

W B W B W

∅
W B

Figure 1: a Subset lattice of Dex1 and b I(∆Kex1rel )
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4.2.2. Propositional Rational Subsumption
Despite being inferentially weaker than their relevant counter-part, rational entailment is of interest820

mainly for two reasons. First, rational entailment can be considered more well-behaved than relevant
closure in terms of KLM postulates they satisfy. The postulates Disjunction (Or), Cautious Monotonicity
(CM) and Rational Monotonicity (RM) are satisfied by materialisation-based rational entailment but not by
materialisation-based relevant entailment. Second, as it will turn out in our complexity analysis, the nested
coverage semantics come at the cost of an extra non-deterministic guessing step. Therefore, reasoning w.r.t.825

nested rational semantics could be more feasible in practice than reasoning under nested relevant semantics.
We proceed in this section as for the relevant semantics before and define a typicality domain whose

granularity of sets of defeasible information is coarser and allows to obtain (only) rational strength.

Definition 4.17 (Rational Domain). Let K be a DKB . The rational domain ∆Krat over the DKB K =
(T ,D) with partition(D) = (E0, . . . , En) and Di =

⋃n
j=iEj (0 ≤ i ≤ n) is defined as830

∆Krat = {dDiF | F ∈ Qc(K), F u Di 6vT ⊥, 0 ≤ i ≤ n}.

By the initial assumption, that all concepts in Qc(K) are consistent with the TBox, it follows that ∆Krat is
a typicality interpretation according to Definition 4.1 and due to the total order of the Di w.r.t. ⊂, it has a
chain shape. The size of the rational domain is polynomial in the size of the input DKB K. The following
example showcases the shape of the rational typicality domain (similar to the presentation of the lattice
domain in Figure 1) as well as the effect of inheritance blocking.835

Example 4.18 (Minimal rational typicality model). Consider again the DKB Kex1 from Example 3.2
with partition(Dex1) = {E1, E2, E3}, leading to the chain of represented DBox subsets (Γ(∆Kex1rat )) D1 =
Dex1, D2 = {Boss @∼ Responsible} and D3 = ∅. The DBox partition and I(∆Kex1rat ) are illustrated in
Figure 2 using obvious abbreviations. Note, that the domain elements are grouped in grey boxes according
to the DBox subset chain indicating which DBox subsets are satisfied by which domain elements.840

According to Definition 4.19, I(∆Kex1rat ) |= Worker @∼ ∃superior.Boss, as well as I(∆Kex1rat ) |= Boss @∼
Responsible. However, as opposed to the minimal typicality model over the relevant domain, the property
Productive (from Worker @∼ Productive) is not satisfied for the element dD2

Boss. This shows once more
how the rough granularity of represented DBox subsets makes the minimal typicality model over the rational
domain subject to inheritance blocking.845

Hence, the representative domain elements of the same concept F are also totally ordered according to the
DBox subset Di they satisfy. In rational semantics it is therefore obvious which of the representatives is
the most typical one and is to be used to read off the information to answer the query. The condition for a
typicality interpretation over the rational domain to satisfy a defeasible subsumption is then characterised
as follows. Recall that this condition determines only the strength of the resulting semantics.850

Definition 4.19 (Defeasible subsumption under rational strength, |=rat).
Let K be a DKB and I be a typicality interpretation over ∆Krat. Then I satisfies a defeasible subsumption
C @∼ D (written I |=rat C @∼ D) iff dDiC ∈ DI for the smallest i s.t. dDiC ∈ ∆Krat.

B @∼ R
W @∼ P ,
W @∼ ∃s.B,

B @∼ R ∅

D1 D2 D3

⊇ ⊇

W,P W W

B,W,R
B,W

Worker

Boss

D1 D2 D3

Figure 2: a Partition partition(Dex1) and b I(∆Kex1rel )
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The definition for entailment of a defeasible subsumption by a DKB K w.r.t. propositional rational semantics
is analogous to the relevant case as well.855

Definition 4.20. The typicality interpretations I ∈ Mod(rat,prop) that are considered in defining entail-
ments based on propositional rational semantics satisfy the following properties:

1. I is standard,

2. I is defined over ∆Krat.

A defeasible knowledge base K = (T ,D) entails a defeasible subsumption C @∼ D under propositional rational860

semantics (written K |=(rat,prop) C @∼ D) iff I |=rat C @∼ D for all I ∈Mod(rat,prop)(K).

We can show the equivalence between materialisation-based and propositional rational entailment.

Theorem 4.21. Let K be an EL⊥ DKB. Propositional rational entailment coincides with materialisation-
based rational entailment, i.e.

K |=(rat,prop) C @∼ D ⇐⇒ K |=
(rat,mat) C @∼ D.

Proof. From Definition 4.19 and Lemma 4.11 we know that K |=(rat,prop) C @∼ D can be decided by865

I(∆Krat), i.e. d
DC
C ∈ DI(∆Krat). Proposition 4.8 shows that this is equivalent to deciding CDC vTDC (C) D. By

Lemma 3.5 this is in turn equivalent to DC u C vT D, which is the definition of K |=(rel,mat) C @∼ D.

Even though we characterised two semantics by defining specific interpretation domains, we can capture
a lot of the results in the remaining paper for general typicality domains. Naturally, those general results
apply to the specific rational and relevant domain just the same.870

We continue now to use the typicality interpretation formalism to resolve the criticism of ignoring de-
feasible information for quantified concepts.

4.3. Nested Subsumption Entailment
The main difference between propositional coverage and nested coverage is clearly the treatment of

defeasible information for the role-successors. While propositional coverage is deliberately oblivious of875

defeasible information for role-successors, nested coverage tries to use as much defeasible information for
role-successors as preservation of consistency admits. We pursue this goal by characterising the set of
maximal typicality models, where each role successor required by K is chosen such that it satisfies a subset
of DCIs from D that is of maximal cardinality while not causing an inconsistency. This provides us with
a restriction on the models of K (those of maximal typicality) that are considered to decide subsumption880

queries of the kind: K |=(x,nest) C @∼ D. Role edges whose end point is a representative domain element
for a bigger subset of D (than other end points), are considered more typical. Intuitively, we can obtain
typicality models of maximal typicality, by extending non-maximal typicality models with more typical role
edges.

The crucial step in transforming a typicality model into a maximal typicality model is to find the role-885

successor of maximal typicality. Suppose, a typicality model has d∅E as r-successor and we want to find
the maximal typical role-successor caused by the existential restriction ∃r.E. Now, in order to upgrade
the typicality of the E-representative, an r-edge to an E-representative that satisfies more DCIs, i.e., a
bigger subset of D, is introduced.8 Obtaining a more typical interpretation by introducing such an edge is
called upgrading the typicality of an interpretation. If we consider from the standard typicality models of a890

DKB K only those models that are more typical w.r.t. some set of upgraded role edges, we can potentially
obtain more entailments and in particular those that are missing in propositional and materialisation-based
defeasible entailment relations. Note, that for some upgrades all standard models realising this upgrade

8The “old” r-edge can remain as it does not affect reasoning.
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contain new role edges, e.g. (dUF , d
∅
G). In our characterisation of maximal typicality, we maximise those new

edges as well.895

We implement this idea by a two-step fixpoint construction. Initially, we start from the minimal typicality
model and determine its typicality upgrades in the first step. In general, upgrades of a (minimal) typicality
model are not necessarily models of K. However, they can either be completed into models of K or they
cannot, since by the new edge, some disjointness constraint in the TBox can be violated. If a typicality
upgrade can be completed into models of K, it can be done so in a minimal way which is the second step.900

Since this model completion could be required to contain role edges that have not been present in the
minimal typicality model, we need to iteratively keep upgrading and (model) completing until none of the
potential upgrades admit a model completion anymore. At this point, maximal typicality is reached. As
it happens, one typicality upgrade (of a certain role-edge) may block another upgrade, i.e. in the presence
of both upgrades no model completion is possible. In this case we need to consider further upgrades of905

both typicality models, each containing only one of the two upgraded edges. This shows that it is possible
to reach a variety of maximal typicality models during this iterative upgrade procedure, starting from the
minimal typicality model.

Conceptually, this procedure corresponds to an iterative restriction of the set of standard models that
are considered to decide defeasible subsumption. Initially, all edges that occur in every standard model910

(Mod(x,prop)) of K are required to be maximal w.r.t. their typicality, i.e. those occurring in I(∆Kx ). New role
edges that are induced by this maximality requirement, are again required to be of maximal typicality, hence
the iterative nature of this process. Eventually, we are able to characterise a restriction on the standard
typicality models of a DKB K, i.e. Mod(x,nest)(K) ⊆ Mod(x,prop)(K), where Mod(x,nest)(K) includes only
those models that are maximal w.r.t. the typicality of the iteratively determined induced role-successors and915

the role-successors occurring in all standard models of K.
We begin to develop the two-step fixpoint construction by characterising the upgrades that a typicality

interpretation allows. As before, we remain as general as possible at first, w.r.t. the underlying domain
and considering an ABox, before specifically looking at subsumption and eventually at instance checking in
Section 5.920

Definition 4.22. Let I = (∆K,I , ·I) and J = (∆K,J , ·J ) be typicality interpretations for K = (A, T ,D).
The set of more typical role edges for a given role r in I is defined as

TRI(r) = {(d, dU
′

H ) ∈ ∆K,I×∆K,I \ rI | ∃ U ⊆ D.(d, dUH) ∈ rI ∧ U ⊂ U ′ ⊆ DH}.

J is a typicality extension of I iff

1. ∆K,J = ∆K,I ,

2. AJ = AI (for A ∈ NC),

3. aJ = aI (for a ∈ sigI(A))

4. rJ = rI ∪R, where R ⊆ TRI(r) (for r ∈ sigR(K)), and925

5. ∃r ∈ sigR(K). rI ⊂ rJ .

The set of all typicality extensions of a typicality interpretation I is typ(I).

Note that the starting points of the edges contained in TRI(r) can be concept or individual representatives.
Consider the DKB Kex1 from Example 3.2 and the minimal typicality model I(∆Kex1rel ) (Figure 1). From Ex-
ample 4.13, one can see that dDWorker

Worker 6∈ (∃superior.Responsible)I(∆
Kex1
rel ). Due to the edge (dDWorker

Worker , d
∅
Boss)930

in superiorI(∆
Kex1
rel ), it holds that (dDWorker

Worker , d
DBoss
Boss ) ∈ TRI(∆

Kex1
rel )

(superior) (Def. 4.22). By extending

the minimal typicality model to contain this upgrade (let J = I(∆Kex1rel )[superior/superiorI(∆
Kex1
rel ) ∪

{(dDWorker

Worker , d
DBoss
Boss )}]) we are able to conclude dDWorker

Worker ∈ (∃superior.Responsible)J . However, suppose
the extra GCI ∃superior.Responsible v ∃coworker.Worker belongs to the TBox. As a consequence, the
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interpretation J would not satisfy the TBox anymore, because dDWorker

Worker has no coworker successors. This935

showcases how a typicality upgrade by Definition 4.22 need not satisfy the underlying DKB. Because of
such situations, a completion of an upgraded interpretation may become necessary to make it satisfy the
knowledge base again. The set of all extensions of an upgraded typicality interpretation that are standard
models of K is exactly the subclass ofMod(x,prop)(K) where the particular upgrade is contained in all models
of that class.940

Definition 4.23. Let K = (T ,D) be a DKB and ∆K a typicality domain over K. A typicality interpretation
I = (∆K, ·I) is a model completion of a typicality interpretation J = (∆K, ·J ) iff

1. J ⊆ I,

2. I |= K, and

3. I is standard945

The set of all model completions of J is denoted as mc(J ).

Note that mc(J ) can also be empty. An interpretation that is a model completion to itself is called a
safe model and obviously satisfies the properties of Definition 4.23. So, for any typicality interpretation
J , all interpretations in mc(J ) are safe models. Observe, that it is no restriction to consider only model
completions of I that belong to mc(I), since if mc(I) = ∅ then no extension of I will be a model of K.950

Naturally, the model completions of a typicality upgrade may introduce new edges. Those edges that
appear in all model completions of a typicality upgrade, are considered necessary w.r.t. the typicality up-
grade, and thus we want to include them in the characterisation of maximal typicality as well. We show
that the model completions of an upgraded typicality interpretation are closed under intersection. This nat-
urally allows to characterise a minimal model completion that is equivalent to the intersection of all model955

completions. The iterative upgrade procedure will then proceed to increase the typicality of this minimal
model completion, rather than considering upgrades for all model completions.9

Proposition 4.24. For a typicality interpretation I = (∆K, ·I) over the DKB K = (T ,D), the set of model
completions mc(I) is closed under intersection.

Proof. Sincemc(I) are considered for finite domains ∆K and it is only necessary to consider the signature of
K, it suffices for our purposes to show closure under finite intersection. Thus, we show for two interpretations
J1,J2 ∈ mc(I) that (J1 ∩ J2) ∈ mc(I) holds, i.e. all three conditions of model completions (in Definition
4.23) hold for J1 ∩ J2. Condition 1 follows quickly from the extension of set inclusion to interpretations
over the same domain. I ⊆ J1 and I ⊆ J2 imply I ⊆ J1 ∩ J2. Condition 2 follows from Proposition 4.4
Claim 2. Ji |= T implies CJi ⊆ DJi for all C v D ∈ T for both i ∈ {1, 2} and by Proposition 4.4 Claim 2
the same holds for J1 ∩ J2, thus J1 ∩ J2 |= T . Condition 2 in the Definition of models is equivalent to

G @∼ H ∈ U =⇒ GJ ∩ {dXF ∈ ∆K | X = U} ⊆ HJ ∩ {dXF ∈ ∆K | X = U}. (∗∗)

for U ⊆ D and (∗∗) holds for both J1 and J2. This way, it is not hard to see that, as before, Proposition960

4.4 implies (J1 ∩ J2), dUF |= U for all F ∈ Qc(K) and U ⊆ D.
Condition 3 is satisfied by Corollary 4.5. �

Proposition 4.24 implies that if there is a model completion for a typicality interpretation J , then there is
also a unique model completion of J that is minimal in the sense that it stems from a minimal number of
extensions.965

9This strategy removes an effect that earlier versions of the typicality model approach were still subject to, where some
typicality upgrades could be missed because they were blocked by arbitrary information that can be satisfied when continuing
to upgrade all model completions. Such arbitrary information cannot exist in the minimal model completion.
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Definition 4.25. Theminimal model completion‚ of a typicality interpretation J withmc(J ) 6= ∅ is defined
as

mmc(J ) =
⋂

I∈mc(J )

I.

Recall that the minimal model completion of a typicality extension need not be maximal w.r.t. the
typicality of role successors, as it may introduce new edges that require further typicality upgrades. We
characterise maximal typicality by typicality extensibility. A typicality interpretation I is said to be typi-970

cality extensible, if there exists a typicality upgrade J in typ(I) such that mc(J ) 6= ∅. Hence, a typicality
interpretation is a maximal typicality interpretation, if it is not typicality extensible. The overall typical-
ity maximisation procedure iteratively performs typicality upgrades and model completions until reaching
maximal typicality. To formalise this process, we introduce some notation and an upgrade operator.

Definition 4.26. The set of all safe models P (∆K) of a typicality domain ∆K over a DKB K is

P (∆K) = {J | J = (∆K, ·J ) ∧ J ∈ mc(J )}.

The typicality upgrade operator T : 2P (∆K) → 2P (∆K) is defined for S ⊆ P (∆K) as:975

1. T (S) = S \ {I} ∪ {mmc(J ) | J ∈ typ(I) ∧mc(J ) 6= ∅}, if I ∈ S is typicality extensible,

2. T (S) = S, otherwise.

For a given set of model completions S ⊆ P (∆K), the fixpoint of T is Tm(S) if Tm(S) = Tm+1(S) with

• T0(S) = S and

• Ti(S) = T (Ti−1(S)) (i > 0).980

The set of maximal typicality extensions of the typicality models in S is typmax(S) = Tm(S).

Note, that P (∆K) is finite, when considering only the finite signature given by the DKB K and finite
typicality domains ∆K. Typicality upgrades may block each other due to disjointness constraints in the
TBox. The following example illustrates how such a typicality extension can lead to multiple different
maximal typicality interpretations, starting from a single interpretation.985

Example 4.27. We extend the DKB from Example 4.13 to DKB Kex2 = (Tex2,Dex1) with the TBox

Tex2 = Tex1 ∪ {∃superior.∃superior.Responsible v ⊥}.

Let the role edge (dDWorker, d
∅
Worker) ∈ superiorI(∆

Kex2
rel ) be upgraded to (dDWorker, d

D
Worker) and likewise

(dDWorker, d
∅
Boss) ∈ superiorI(∆

Kex2
rel ) to (dDWorker, d

DBoss
Boss ). If both of these upgrades exist in the same typi-

cality extension J , it does not admit to a model completion, as an inconsistency would be caused by

dDWorker ∈ (∃superior.∃superior.Responsible)J .

The typicality upgrade (dDWorker, d
{Worker@∼Productive}
Boss ), however, is “allowed” to occur in a typicality exten-

sion, leading to the entailment of Worker @∼ ∃superior.(Boss u Productive). This shows that inheritance
blocking can be remedied even for quantified concepts when upgrading typicality of successors in a lattice do-
main, as the granularity of considered DBox subsets, allows to “individually disregard” contradicting DCIs.
In the rational domain, only an even less typical (not satisfying Worker @∼ Productive) Boss representative990

would be allowed as a superior successor of a Worker representative.
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The different maximal typicality interpretations are the reason why the iterative T -operator has to consider
sets of typicality interpretations S instead of single interpretations. Since we want to characterise semantics
that are usually described as cautious, we want to maintain all mutually exclusive upgrade sequences and
eventually end up with a variety of maximal typicality models. How does this correspond to restricting the995

set of standard typicality models of a DKB K? Each of these maximal typicality models characterises a
subset of all standard models of K for which a particular (maximal) set of typicality upgrades is satisfied.
For cautious semantics we want to reason over the union of those restrictions of Mod(x,prop)(K). Such
entailments can be characterised by considering only the set of all maximal typicality models, starting from
a minimal typicality model I(∆K), for Mod(x,nest)(K).1000

4.3.1. Nested Relevant Subsumption
Most of the prerequisites for the semantic characterisation of nested relevant entailment were introduced

already in a general way. We consider as a foundation again the relevant domain ∆Krel from Definition 4.12
and hence the entailment |=rel as introduced in Definition 4.14. The set of considered models for nested
relevant entailment coincide with the maximal typicality models obtained from the minimal typicality model1005

over the relevant domain.

Definition 4.28 (Defeasible subsumption under nested relevant semantics, |=(rel,nest)).
Let Mod(rel,nest)(K) = typmax({I(∆Krel)}). A defeasible knowledge base K = (T ,D) entails a defeasible
subsumption C @∼ D under nested relevant semantics (written K |=(rel,nest) C @∼ D) iff I |=rel C @∼ D for
all I ∈Mod(rel,nest)(K).1010

Our main goal of this article is to develop a reasoning method that computes defeasible subsumptions
such that typicality of objects described by nested existential restrictions is regarded. Our claim is now
that reasoning under (rel, nest) semantics does remedy the short-coming of materialisation-based reasoning
which does not regard typicality of objects described by nested existential restrictions. So, it remains to
show that reasoning with maximal typicality models supports strictly more entailments than reasoning with1015

all typicality models, hence materialisation-based reasoning—in particular when it comes to role successors.

Theorem 4.29. For two EL⊥ concepts C, D and an EL⊥ DKB K the following holds:

1. K |=(rel,mat) C @∼ D =⇒ K |=(rel,nest) C @∼ D, and

2. K |=(rel,mat) C @∼ D 6⇐= K |=(rel,nest) C @∼ D

Proof. Claim 1 follows from the fact that the minimal typicality model I(∆Krel) is included (according to1020

Definition 2.2) in all maximal typicality models of I(∆Krel), i.e. J ∈ typmax({I(∆Krel)}) =⇒ I(∆Krel) ⊆ J .
Claim 2 can be shown by using Example 4.13 as a counter-example. In preparation to do so, let s denote
the role superior, and W , B, R denote the concepts Worker, Boss and Responsible respectively, also let
K = Kex1, T = Tex1 and D = Dex1 for brevity and recall that DW = D. It needs to be verified, that

∀J∈typmax({I(∆Krel)}).J |=rel W @∼ ∃s.R

It is not hard to see that this claim holds if (dDW , d
DB
B ) ∈ sJ for all J ∈ typmax({I(∆Krel)}).1025

In order to show that ∀J ∈ typmax({I(∆Krel)}).(dDW , d
DB
B ) ∈ sJ holds, we proceed by contradiction and

assume that ∃I ∈ typmax({I(∆Krel)}).(dDW , d
DB
B ) /∈ sI , then the interpretation I ′ = I[s/sI ∪ {(dDW , d

DB
B )}] is

clearly in typ(I) where XI = XI
′
for every left- and right-hand side X of inclusion statements in T and

D, i.e. I ′ |= K, hence I ′ ∈ mc(I ′), i.e. mc(I ′) 6= ∅. Therefore Condition 1. for typicality upgrade operators
from Definition 4.26 applies to I, contradicting that I ∈ typmax({I(∆Krel)}). �1030

The counter-example used in this proof gives evidence to the claim that nested relevant subsumption is
stronger than its materialisation-based counter part. Whether this is also the case for the inferentially
weaker nested rational subsumption is to be answered next.
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4.3.2. Nested Rational Subsumption
Analogous to the case of nested relevant entailment, we need to characterise nested rational entailment1035

for a DKB K, based on the rational domain ∆Krat from Definition 4.17 and the set of maximal typicality
models obtained from the minimal typicality model over ∆Krat.

Definition 4.30 (Defeasible subsumption under nested rational semantics, |=(rat,nest)).
Let Mod(rat,nest)(K) = typmax({I(∆Krat)}). A defeasible knowledge base K = (T ,D) entails a defeasible
subsumption C @∼ D under nested rational semantics (written K |=(rat,nest) C @∼ D) iff I |=rat C @∼ D for1040

all I ∈Mod(rat,nest)(K).

It remains to show that reasoning with maximal typicality models supports strictly more entailments
than reasoning with all typicality models, hence materialisation-based reasoning under rational closure.

Theorem 4.31. For two EL⊥ concepts C, D and an EL⊥ DKB K the following holds:

1. K |=(rat,mat) C @∼ D =⇒ K |=(rat,nest) C @∼ D, and1045

2. K |=(rat,mat) C @∼ D 6⇐= K |=(rat,nest) C @∼ D

Proof. The proof works analogous to the proof of Theorem 4.29. Claim 1 simply follows from Theorem
4.16 and the fact that I(∆Krat) ⊆ J for all J ∈ typmax({I(∆Krat)}). Claim 2 can be shown with Kex1

from Example 3.2, using the same abbreviations as before. Theorem 4.21 and the consequences discussed
in Example 3.2 show that dD1

B ∈ RI(∆
Kex1
rat ). Assume for a contradiction, I ∈ typmax({I(∆Kex1rat )}) with

(dD0

W , dD1

B ) 6∈ sI . It is easy to see that the interpretation J = I[s/sI ∪ {(dD0

W , dD1

B )}] is a safe model of Kex1,
contradicting the maximality of I. Therefore all maximal typicality models J ∈ typmax({I(∆Kex1rat )}) need
to satisfy (dD0

W , dD1

B ) ∈ sJ and therefore,

J |= Worker @∼ ∃superior.Responsible, i.e. Kex1 |=(rat,nest) Worker @∼ ∃superior.Responsible.

However, as covered before, Kex1 6|=(rat,mat) Worker @∼ ∃superior.Responsible. �

In this subsection we defined defeasible subsumption under new semantics, namely under nested coverage
combined with either relevant or rational strength. These semantics are based on maximal typicality models
that we have originally introduced in [11, 12] and that make use of the “typicality dimension” of typicality1050

domains to accommodate different subsets of the DBox D. Now having achieved these results for termi-
nological reasoning, a natural question is how the computational complexity of such reasoning is. This is
answered in Section 6. Another follow-up question is how to extend this approach to assertional reasoning.
This defeasible instance checking is what we address next.

5. Typicality Interpretations for Defeasible Instance Checking1055

In this section we want employ typicality interpretations to decide defeasible instance checking under the
four semantics considered in the last section. We develop algorithms for the four semantics as for defeasible
subsumption. Again, we begin with propositional coverage, but, here, first together with rational and then
with relevant strength. Then we turn to nested coverage of defeasible information and again combine it first
with rational and then with relevant strength. The starting point of our investigation on defeasible instance1060

checking is the materialisation-based approach by Casini et al. in [4] and our variant of it adapted to EL⊥
in Section 3.2.2.

First we want to “recreate” materialisation-based instance checking by means of typicality interpretations
to achieve methods for deciding defeasible instance checking under (x, prop) semantics. Then we apply our
mechanism for achieving typicality upgrades on the conceptual information about individuals. For example,1065

for (∃r.A)(a) we can apply defeasible information to individual a and check whether a is perhaps related
via r to a typical instance of A. This kind of consequence from DCIs for role successors is not supported by
Casinis approach.
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For DLs that allow reasoning based on canonical models, it is a common technique to translate the
ABox into an interpretation. In order to do so, we impose (as in Section 3.2.2) the property that ABoxes1070

are conjunction-free, i.e. conjunctions do not appear on the top-level of any concept. This is merely a
requirement to ease presentation, but not a restriction, as the conjuncts of a conjunction can be asserted
for an individual one by one. So, we assume w.l.o.g. every ABox is conjunction-free. Recall that, given
an EL⊥ DKB K = (A, T ,D), the ABox A can be translated into an interpretation I over the domain
{da | a ∈ sigI(A)} ∪ {dE | E ∈ Qc(K)} as follows:1075

• A(a) ∈ A =⇒ da ∈ AI ,

• (∃r.E)(a) ∈ A =⇒ (da, dE) ∈ rI and

• r(a, b) ∈ A =⇒ (da, db) ∈ rI .

In general this particular translation does not yield a model of the whole knowledge base, as the concept
representative elements dE do not necessarily belong to EI . However, due to the construction of a minimal1080

typicality model (and Proposition 4.8), it holds for concept representatives, that dUE ∈ EI(∆K) for any
U ⊆ D (and dUE ∈ ∆K). Our approach to obtain a canonical model for the whole DKB K = (A, T ,D) with a
non-empty ABox A is to combine the interpretation obtained by translation from the ABox with a minimal
typicality model for (∅, T ,D).

The role edges such as (da, dE) in the classical model leave a degree of freedom in a typicality inter-1085

pretation for choosing the role-successor element among all representatives of E with differing typicality.
Those edges (initially) point to those representatives that make the least assumptions about typicality. We
use (da, d

∅
E), in order to characterise another kind of minimal typicality model. After that we show that

propositional rational instance checks are equivalent to the materialisation-based approach. We can then
use the same typicality upgrade technique as before to obtain not only strictly more inferences than are1090

contained in the rational closure, but also to introduce propositional and nested relevant instance checking.
The method for instance checking in defeasible DLs under relevant semantics presented here is the first one
for this task.

The ABox interpretation IA,T , is constructed using classical reasoning over (A, T ), much like classical
canonical models or minimal typicality models.1095

Definition 5.1. Let K = (A, T ,D) be a DKB. Define the ABox interpretation IA,T = (∆IA,T , ·IA,T ),
where

• ∆IA,T = {da | a ∈ sigI(A)} ∪ {d∅E | E ∈ Qc(K)},

• aIA,T = da for a ∈ sigI(A),

• AIA,T = {da | (A, T ) |= A(a)}, and1100

• rIA,T = {(da, db) | r(a, b) ∈ A} ∪ {(da, d∅E) | (A, T ) |= (∃r.E)(a)}.

for all A ∈ sigC(K), r ∈ sigR(K) and E ∈ Qc(K).

ABox interpretations for K = (A, T ,D) are defined such that they are quasi-disjoint from typicality inter-
pretations over (∅, T ,D). This enables the use of Proposition 2.6. ABox interpretations are clearly typicality
interpretations according to Definition 4.1. We distinguish the following kinds of typicality interpretations:1105

• typicality interpretations over an empty ABox, if its domain contains only concept representatives, i.e.
as considered in Section 4.

• ABox interpretations contain essentially no information about concept representatives, but only indi-
viduals.

• typicality interpretations over the full DKB (or over a non-empty ABox) are unions of a typicality1110

interpretation over an empty ABox and an ABox interpretation.
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For an arbitrary typicality interpretation J = (∆K, ·J ) over K = (∅, T ,D) and the ABox interpretation
IA,T , the common part of both domains is ∆K ∩ ∆IA,T = {d∅E | E ∈ Qc(K)}.10 Since the extensions of
concept names in the ABox interpretation do not contain concept representatives and no role edges have
a concept representative as the origin (Def. 5.1), quasi-disjointness holds. Therefore, we can consider the1115

union J ∪ IA,T , for which the property of Proposition 2.6, i.e. CJ∪IA,T ∩∆K = CJ , is satisfied. For such
a union of a typicality interpretation over an empty ABox and an ABox interpretation, the extension of
individual names is clearly taken from the ABox interpretation, i.e. aJ∪IA,T = aIA,T .

An instance relationship C(a) is satisfied in a typicality interpretation I just as in the classical case, i.e.
I |= C(a) iff aI ∈ CI . However, to use our notation in a consistent way we say I |= C(a) iff I |=rat C(a)1120

iff I |=rel C(a). The following lemma shows that our construction is capable of classical reasoning in the
same way a classical canonical model is, regardless of the specific typicality domain that is being used in
the minimal typicality model.

Lemma 5.2. For a DKB K = (A, T ,D), a minimal typicality model I(∆K) = (∆K, ·I(∆K)) over K and the
ABox interpretation IA,T = (∆IA,T , ·IA,T ) it holds that1125

(A, T ) |= C(a) iff I(∆K) ∪ IA,T |= C(a)

for EL⊥ concepts C with Qc(C) ⊆ Qc(K) and a ∈ sigI(A).

Proof. We begin by proving the only if direction, w.l.o.g. for C = A1u· · ·uAnu∃r1.E1u· · ·u∃rm.Em. For
all 1 ≤ i ≤ n and 1 ≤ j ≤ m, (A, T ) |= C(a) implies (A, T ) |= Ai(a) and (A, T ) |= (∃rj .Ej)(a). It follows
by Definition 5.1 that da ∈ A

IA,T
i and (da, d

∅
Ej

) ∈ rIA,Tj Therefore, by the definition of ∪ for interpretations,

also da ∈ A
I(∆K)∪IA,T
i and (da, d

∅
Ej

) ∈ rI(∆K)∪IA,T
j . By Propositions 4.8 and 2.6 and the fact that IA,T is1130

quasi-disjoint from I(∆K), it holds that d∅Ej ∈ E
I(∆K)∪IA,T
j , hence da ∈ (∃rj .Ej)I(∆K)∪IA,T for 1 ≤ j ≤ m.

Therefore da ∈ CI(∆K)∪IA,T .
We prove the if direction by structural induction on concept C. For the induction start, C = A (A ∈ NC),

I(∆K)∪IA,T |= A(a) means da ∈ AIA,T . By Definition 5.1, (A, T ) |= A(a) must hold. The induction step for
conjunction is trivial and for C = ∃r.E, assume for some b ∈ sigI(A), db ∈ EI(∆K)∪IA,T iff (A, T ) |= E(b).1135

From da ∈ (∃r.E)I(∆K)∪IA,T we know that there is some e ∈ ∆K ∪∆IA,T for which (da, e) ∈ rI(∆K)∪IA,T

and e ∈ EI(∆K)∪IA,T . We distinguish two cases for e either being a concept or an individual representative.
Case 1: e represents an individual in ∆K∪∆IA,T . This means in ∆IA,T w.l.o.g. e = db. By the induction
hypothesis, db ∈ EI(∆K)∪IA,T is equivalent to (A, T ) |= E(b) and from Definition 5.1, (da, db) ∈ rI(∆K)∪IA,T

implies r(a, b) ∈ A. Combining both observations, it is implied that (A, T ) |= (∃r.E)(a).1140

Case 2: e represents a concept in ∆K ∪ ∆IA,T . By the construction of IA,T we know w.l.o.g. that
e = d∅F . By Proposition 2.6 and the fact that IA,T is quasi disjoint from I(∆K), it holds that d∅F ∈ EI(∆K).
Then Propositions 3.4 and 4.8 imply F vT E. From (da, d

∅
F ) ∈ rI(∆K)∪IA,T and Def. 5.1 we know (A, T ) |=

(∃r.F )(a) and with F vT E, it is clear that (A, T ) |= (∃r.E)(a). �

The interpretations obtained from union of the ABox interpretation and the minimal typicality model are1145

canonical for instance relationships. They are indeed models for the classical components of the DKB: the
ABox and the TBox.

Proposition 5.3. For a minimal typicality model I(∆K) = (∆K, ·I(∆K)) over K = (A, T ,D) and the ABox
interpretation IA,T = (∆IA,T , ·IA,T ) it holds that

I(∆K) ∪ IA,T |= (A, T ).

10Recall, that we can assume w.l.o.g. that Qc(K) = Qc(T )—as discussed in Section 2.
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Proof. By Proposition 2.6 and Definition 2.5 we know that CI(∆K)∪IA,T ∩∆K = CI(∆K). Therefore, the1150

known property dUF ∈ F I(∆K) (Proposition 4.8) is equivalent to dUF ∈ F I(∆K)∪IA,T . We prove satisfaction of
the ABox and TBox separately, beginning with A.

First, observe that for any a ∈ sigI(A), aI(∆K)∪IA,T = aIA,T = da since I(∆K) does not consider
individuals. Therefore, we need to check the following three conditions for A to be satisfied by I(∆K)∪IA,T :

1. r(a, b) ∈ A =⇒ (da, db) ∈ rI(∆K)∪IA,T ,1155

2. A(a) ∈ A =⇒ da ∈ AI(∆K)∪IA,T , and

3. (∃r.E)(a) ∈ A =⇒ da ∈ (∃r.E)I(∆K)∪IA,T .

Towards 1, it holds that r(a, b) ∈ A implies (da, db) ∈ rIA,T by Definition 5.1 and due to the union of
interpretations, (da, db) ∈ rI(∆K)∪IA,T . 2 and 3 follow directly from Lemma 5.2.

By Lemma 4.9 and Proposition 2.6 it is clear that T is satisfied w.r.t. domain elements in ∆K, it remains1160

to show for C v D ∈ T that da ∈ CI(∆K)∪IA,T =⇒ da ∈ DI(∆K)∪IA,T holds for a ∈ sigI(A). da ∈
CI(∆K)∪IA,T is equivalent to (A, T ) |= C(a) by Lemma 5.2 and for C v D ∈ T , this implies (A, T ) |= D(a)

which in turn is equivalent to da ∈ DI(∆K)∪IA,T . �

For typicality interpretations over the full DKB obtained by union, this result, together with the canonicity
for instance checking (Lemma 5.2) and the canonicity of the minimal typicality model for subsumption1165

(Lemma 4.9), means that this kind of interpretations admit classical reasoning. Furthermore, the canonicity
of the model I(∆K) ∪ IA,T w.r.t. classical instance checking allows us to reach an equivalent entailment
relation for defeasible rational instance checking as in [4] on the ABox level.

We proceed in the order for rational and relevant semantics opposite to earlier sections, as [4] only
characterises defeasible instance checking under rational closure and, since, to the best of our knowledge,1170

answering defeasible instance queries under relevant semantics has never been considered before this paper,
introducing it requires more effort.

5.1. Propositional Rational Instance Checking
In Section 3 we have already shown how to construct an extended ABox (to be precise, an extended

knowledge base) in EL⊥, to obtain equivalent classical entailments as when using (an EL⊥) ABox and1175

extending it with material implication assertions (c.f. ALC, [4]). In the first part of the present section,
we have shown minimal typicality models in conjunction with quasi-disjoint ABox interpretations to be
canonical w.r.t. classical consequences. From Lemmas 3.7 and 5.2 we immediately obtain that our semantic
characterisation of propositional rational instance containment is equivalent to the materialisation-based
approach. Recall that for a typicality model J over a full DKB, J |=rat C(a) iff J |= C(a) iff aJ ∈ CJ ,1180

just as in the classical case.

Definition 5.4 (Defeasible instance checking under propositional rational semantics).
For a DKB K = (A, T ,D), a sequence s over sigI(A), the rational domain ∆Krat, and the default assump-
tion extension Âsrat(for EL⊥), propositional rational instance containment (written K, s |=(rat,prop) C(a)) is
characterised as I(∆Krat) ∪ IÂsrat,T ∪TD |=

rat C(a).1185

The main result is a direct consequence of the aforementioned lemmas.

Theorem 5.5. Materialisation-based rational instance checking coincides with propositional rational in-
stance checking, i.e. for an EL⊥ DKB K = (A, T ,D) (over a complete ABox and unfoldable TBox), and a
sequence s over sigI(A),

K, s |=(rat,mat) C(a) iff K, s |=(rat,prop) C(a)

�1190
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5.2. Propositional Relevant Instance Checking
This is new territory, as it has never been discussed in the literature. The semantics for K, s |=(rel,prop)

C(a) are obtained analogous to those for (rat, prop), by swapping the underlying domain of the minimal
typicality model (over an empty ABox), and using I(∆Krel). It remains to devise an ABox extension that is
appropriate to obtain relevant consequences.1195

A first idea would be to adapt the direct construction of sets DC ⊆ D for K = (A, T ,D) and a concept
C from Section 3, considering justifications for individuals instead of concepts. Recall that inconsistency
of a concept with a subset of the DBox is checked by classical reasoning and materialisation of D, e.g.
D u C vT ⊥. Based on this notion of inconsistency, the set of all C-justifications (minimal subsets of D)
is computed and the rank-minimal part (w.r.t. partition(D)) is removed from each justification to obtain1200

the maximal subset of D, consistent with C, called DC . In this approach, the two consistent DBox subsets
DC , DH of two different concepts C and H are more or less unrelated, determining one does not rely on the
other.11 The set of all justifications can be determined with so-called axiom pinpointing techniques (EL: [21],
ALC: [19]), for subsumption and instance checks alike [18]. We do not enter the excursion into the realm of
determining justifications in this article, even though some tailoring to consider defeasible concept inclusions1205

is required but can be discovered with little effort.12 We define minimal justifications for individuals in the
lines of Definition 3.1.

Definition 5.6. Let K = (A, T ,D) be a DKB, J ⊆ D, and a ∈ sigI(A). J is an a-justification w.r.t. K,
iff (A∪{DE@∼F

(a) | E @∼ F ∈ J }, T ∪TD) is inconsistent and (A∪{DE@∼F
(a) | E @∼ F ∈ J

′}, T ∪TD) is not
inconsistent for all J ′ ⊆ J .1210

We extend the definition of justifications() to allow for a ∈ sigI(K) and return justifications(K, a) =
(J1, . . . ,Jm), all a-justifications w.r.t. K. The maximal subset of the DBox D in K = (A, T ,D) that is
consistent with an individual a, is then denoted as DK,a = D \

⋃m
i=1minrK(Ji). The reason why we carry

K into the notation for consistent subsets of D when considering individuals, comes from the issue with
explicit edges between individuals r(a, b) ∈ A, discussed and illustrated in Section 3. The consistent subset1215

of D for an individual a may be different after having “enriched” another individual b. This is precisely the
reason why the naive idea to simply enrich every individual in the given sequence with its relevance based
consistent subset of D is not compatible with the goal to extend rational semantics. Consider for example
K = (A, T ,D) with A = {A(a), r(b, a)}, T = {A uX v ⊥, B u ∃r.B v ⊥} and D = {> @∼ B,> @∼ X} and
the sequence of individuals (a, b). When determining the consistent subset of a w.r.t. K as it is initially1220

given, the minimal relevant approach would determine DK,a = {> @∼ B}, as > @∼ X is the only DCI causing
an inconsistency with a at that point. For the same reason, rational semantics would not allow any DCIs
to be satisfied for a, since both DCIs are of the same exceptionality rank (partition(D) = (D)). When
considering enrichments for the individual b, the DCIs that a is (actively) satisfying have to be taken into
account. At this point, B(a) holds for relevant semantics, but not for rational semantics. Therefore, > @∼ B1225

would cause an inconsistency for b in the current state of ABox extension in relevant semantics. As a result,
B(b) can be obtained from rational semantics but not from relevant. This is problematic as the goal of
relevant reasoning is to extend rational reasoning (i.e. extend obtained consequences) while “removing” the
effect of inheritance blocking. Without at least obtaining rational consequences from relevant semantics, the
two become nearly incomparable and thus difficult to put in perspective. For this reason, we propose that1230

the relevant ABox extension needs to build on top of the rational ABox extension, in order to guarantee
strictly stronger entailment. Overall, the ABox extension can then be seen as a two-step enrichment. First,
defeasible information is added in a rough, DBox-ranked-partition style (including inheritance blocking),
and in a second pass over the sequence of individuals, consistent DCIs are determined in a more fine-grained
way, in order to combat inheritance blocking.1235

11Note, that for C vT H it is could be that DC ⊆ DH (not obvious), however since the order in which the DBox subsets
are computed is irrelevant, they are deemed unrelated w.r.t. their construction.

12Finding justifications for K |= D u C v ⊥ produces subsets of K not of D, with our TBox extension however, testing
TD(C) |= CD v ⊥, one could isolate the part of the justifications containing GCIs CD u E v F to obtain a subset of D.
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Algorithm 2 makes clear how the ABox extension is computed based on relevance w.r.t. a given sequence
over the individuals in sigI(A). Recall that Âsrat is the extended EL⊥ ABox returned by Algorithm 1.

Algorithm 2: Computation of default assumption extension Âsrel (relevant)
Input: Sequence s on sigI(A), w.l.o.g. s = (a1, . . . , an), K = (A, T ,D)

Output: Default assumption extension Âsrel
1 A0 := Âsrat
2 for ai ∈ (a1, . . . , an) do
3 Ai := Ai−1 ∪ {DG@∼H

(ai) | G @∼ H ∈ D(Ai−1,T ,D),a}
4 end
5 return An

In the following, we denote the returned ABox from Algorithm 2 as Âsrel and we show superiority (in
terms of number of consequences obtained) of relevant over rational semantics.

Definition 5.7 (Defeasible instance checking under propositional relevant semantics).1240

For an EL⊥ DKB K = (A, T , D), a concept C, an individual a ∈ sigI(A) and the extended ABox Âsrel
obtained from K and s using Algorithm 2, propositional relevant instance query entailment is characterised
as follows:

K, s |=(rel,prop) C(a) iff I(∆Krel) ∪ IÂsrel,T ∪TD |= C(a).

We show the following example to illustrate how the default assumption extension Âsrel, computed based
on relevant semantics, does not exhibit inheritance blocking as the rational extension of the ABox does.1245

Example 5.8 (Minimal Typicality Model with non-empty ABox).
Consider the DKB Kex3 = {A, Tex1,Dex1}, extending Kex1 by the ABox A = {Worker(bob), Boss(alice)}.
We use obvious abbreviations of concept and role names once more to improve readability. Clearly, as
bob and alice are not related, any default assumption extension of A will be independent of the sequence of
individuals s. The default assumption extension Âsrat extends A by the assertions DW@∼∃s.B(bob), DW@∼P

(bob)1250

and DB@∼R
(bob) for the individual bob. For alice, only DB@∼R

(alice) is added, because the concept assertion
DW@∼∃s.B(alice) leads to the knowledge base (A ∪ {DW@∼∃s.B(alice)}, Tex1 ∪ TDex1) to be inconsistent. The
rough granularity of the considered DBox subsets in rational semantics then also leads to the exclusion of the
assertion DW@∼P

(alice) in Âsrat. Âsrel then extends (by Algorithm 2) Âsrat in two iterations. Processing the
individual bob may not lead to further extensions, as bob already has all the corresponding DCI assertions1255

from Dex1. Processing alice however, extends Âsrat by the assertion DW@∼P
(alice), because no (minimal)

alice-justification w.r.t. (Âsrat, Tex1 ∪ TDex1) contains DW@∼P
(alice).

Since Boss v Worker, Boss(alice) and DW@∼P
(alice) are then contained in the “relevant extension” of

Kex1 but not in the “rational extension”, we can conclude

I(∆Kex1rel ) ∪ IÂsrel,Tex1∪TDex1 |= Productive(alice)

however,1260

I(∆Kex1rat ) ∪ IÂsrat,Tex1∪TDex1 6|= Productive(alice).

Figure 3 shows the minimal typicality model I(∆Kex1rel ) in union with the ABox interpretation IÂsrel,Tex1∪TDex1 .
The granularity of the default assumption extension for the ABox allows to illustrate which concept assertions
have been added in the extension by (visually) associating individual domain elements (dalice, dbob) with one
of the DBox subsets. For the rational domain (c.f. Fig. 2), one can imagine an analogous visualisation.
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Theorem 5.9. Propositional relevant instance checking is strictly stronger than propositional rational in-1265

stance checking i.e.
K, s |=(rat,prop) C(a) =⇒ K, s |=(rel,prop) C(a),

the converse does not always hold.

Proof. After applying the definitions of both semantics, we need to show that I(∆Krat)+IÂsrat,T ∪TD |= C(a)

implies I(∆Krel)+IÂsrel,T ∪TD |= C(a). By Lemma 5.2 and monotonicity of classical semantics, this implication

holds if Âsrat ⊆ Âsrel. It is easy to see in Algorithm 2 that Ai ⊆ Aj for all 1 ≤ i < j ≤ n, hence1270

Âsrat = A0 ⊆ An = Âsrel.
Example 5.8 provides a counterexample for the converse. �

This is a strong result, that aligns with the superiority of relevant semantics over rational semantics for
defeasible subsumption. A default assumption extension of the ABox based on minimal justifications has
been named as an open problem in [8] but has not been introduced in the literature since. We are positive,1275

that the default assumption extension that we introduce here can be adapted to the materialisation-based
approach in order to lift propositional-style semantics to the more expressive DL ALC. As for the semantics
of subsumption, eradicating inheritance blocking alone does not mitigate the issue of neglecting quantified
concepts in propositional style (materialisation-based) semantics. We investigate typicality upgrades of
minimal typicality models over non-empty ABoxes next.1280

5.3. Nested Instance Checking
The investigation towards nested instance checking semantics can afford to be rather small, due the

general definitions regarding the upgrade procedure in Section 4, while presenting a major advancement in
defeasible KLM-style reasoning. Not only are relevant semantics for instance checking introduced for the
first time, but both rational and relevant semantics are properly lifted to the Description Logic EL⊥ with1285

the nested coverage. The upgrade procedure as described in Section 4 applies to the typicality interpreta-
tions I(∆Krel) ∪ IÂsrel,T ∪TD and I(∆Krat) ∪ IÂsrat,T ∪TD just the same. Only a slight adjustment is required.
Individual representatives are not syntactically associated with a DBox, hence model completions w.r.t.
K = (Âsrel, T ,D) do not force individual representatives to keep satisfying DCIs after a typicality upgrade.
At the same time, assertions such as DE@∼F

(a) hold no meaning in the extended ABox without considering1290

TD. Therefore, for the input DKB K = (A, T ,D), the typicality upgrade procedure w.r.t. e.g. rational
semantics always needs to consider (Âsrat, T ∪TD,D) as the input. Now, everything required to characterise
both types of nested semantics and show their superiority over the propositional-style semantics, exists.

DW
W

DB
W B W W

W B W B W

∅
W B

DW
bob

DB
alice

Figure 3: The minimal typicality model I(∆Kex1rel ) ∪ IÂs
rel
,Tex1∪TDex1

.
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5.3.1. Nested Rational Instance Checking
It only remains to define defeasible instance checking under nested rational semantics and show that the1295

resulting entailments properly extend those obtained by propositional style semantics.

Definition 5.10 (Defeasible instance checking under nested rational semantics).
For a given EL⊥ DKB K = (A, T ,D), a concept C, an individual a ∈ sigI(A) and a sequence s over
the individuals in sigI(A), nested rational instance checking is defined as follows. Let Mod(rat,nest) =
typmax({I(∆Krat) ∪ IÂsrat,T ∪TD}).1300

K, s |=(rat,nest) C(a) iff ∀J ∈Mod(rat,nest).J |=rat C(a)

We characterise superiority of these semantics over propositional-style semantics through implication of
entailment as follows.

Theorem 5.11. Nested rational instance checking is strictly stronger than propositional rational instance
checking, i.e.

K, s |=(rat,prop) C(a) =⇒ K, s |=(rat,nest) C(a),

the converse does not hold in general.1305

Proof. For all interpretations J ∈ typmax({I(∆Krat)∪ IÂsrat,T ∪TD}), it is clear that I(∆Krat)∪ IÂsrat,T ∪TD ⊆
J , since typ() and mmc() only ever extend the minimal typicality model over the full DKB as well as

∆J = ∆
I(∆Krat)∪IÂsrat,T ∪TD and aJ = a

I(∆Krat)∪IÂsrat,T ∪TD . By Proposition 4.4, I(∆Krat) ∪ IÂsrat,T ∪TD |= C(a)

then clearly implies J |= C(a). To disprove the converse, consider Example 5.8, with the obvious concept
and role name abbreviations. It can be readily seen, that since A does not contain any role-assertions, the1310

domain element dbob “behaves” the same as dDW w.r.t. model completions and typicality extensions. Therefore,
an analogous argument as in the proof of Theorem 4.31 shows that (dbob, d

D2

B ) ∈ sJ must be true in all
maximal typicality models J of I(∆Kex1rel ) ∪ IÂsrel,Tex1∪TDex1 , hence Kex3, s |= (∃superior.Responsible)(bob)
holds for all sequences s over sigI(A), which cannot be derived by propositional rational semantics. �

5.3.2. Nested Relevant Instance Checking1315

It only remains to define defeasible instance checking under nested relevant semantics and show that the
resulting entailments properly extend those obtained by propositional style semantics. Analogous to nested
rational semantics, we define nested relevant semantics based on the relevant domain and the relevance-based
ABox extension Âsrel.

Definition 5.12 (Defeasible instance checking under nested relevant semantics).1320

For a given EL⊥ DKB K = (A, T ,D), a concept C, an individual a ∈ sigI(A) and a sequence s over
the individuals in sigI(A), nested rational instance checking is defined as follows. Let Mod(rel,nest) =
typmax({I(∆Krel) ∪ IÂsrel,T ∪TD}).

K, s |=(rel,nest) C(a) iff ∀J ∈Mod(rel,nest).J |=rel C(a)

The following main result naturally aligns with Theorem 5.11.

Theorem 5.13. Nested relevant instance checking is strictly stronger than propositional relevant instance1325

checking, i.e.
K, s |=(rel,prop) C(a) =⇒ K, s |=(rel,nest) C(a),

the converse does not hold in general.
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Proof. Proving the implication is analogue to the first part of the proof of Theorem 5.11. To disprove the
converse, consider Example 5.8, with the obvious concept and role name abbreviations. With an analogous
argumentation as in the proofs of Theorem 4.31 and 5.11 we conclude that (dbob, d

DB
B ) ∈ sJ must be true in1330

all maximal typicality models J of I(∆Kex1rel ) ∪ IÂsrel,Tex1∪TDex1 , hence Kex3, s |= (∃superior.(Responsible u
Productive))(bob) holds for all sequences s over sigI(A), which cannot be derived by propositional relevant
semantics. �

The final remark in the proof of Theorem 5.13 also shows how defeasible conclusions derived for quantified
concepts are generally not subject to inheritance blocking under nested relevant entailments.1335

6. Complexity of Nested Defeasible Entailments

In this section we are investigating the computational complexity for deciding the entailments under
nested rational and relevant semantics. Since propositional semantics coincide with the materialisation-
based approach, our results from Section 3.2 prove the claim in [4], that the complexity of materialisation-
based (and propositional) reasoning resides with the underlying DL. It is thus polynomial for EL⊥ w.r.t.1340

rational semantics. The complexity of materialisation-based and propositional relevant semantics appears
to be dominated by the computation of all justifications (worst-case exponentially many in the input). The
discussion is cut short in [8], since for ALC this observation might be enough, as classical reasoning in ALC
is EXP–Time complete [22]. For EL⊥ it might be worth investigating whether a consistent subset of the
DBox can be computed without enumerating all justifications, but simply determining whether a single1345

DCI belongs to some justification for every DCI. The latter is shown to be NP–compl. in [18]. Since this
investigation would lean too far into the subject of axiom pinpointing, we leave this open for future work.

We shall investigate upper bounds for defeasible subsumption and instance checking under nested ratio-
nal and relevant semantics by describing algorithms to compute minimal model completions and maximal
typicality models, based on a non-deterministic guess of typicality upgrades. In the second part of this1350

section, we present a reduction from the NP–compl. (1-in-3)-positive 3sat satisfiability problem to non-
entailment of defeasible subsumption under nested rational semantics. This lower bound also translates
to defeasible instance checking under nested rational semantics with a simple argument. Unfortunately,
this lower bound does not immediately translate to the stronger relevant semantics. Finding an appropriate
bound on defeasible subsumption and instance checking under nested relevant semantics is highly non-trivial1355

and therefore left as an open question.
As a foundation for our investigation of the computational complexity, we introduce the notion of a size

of a DKB and of its components. Let K be a DKB, A an ABox, T a TBox, D a DBox and let C and D be
concepts. The size of these is:

• ||A|| = 1 for A ∈ NC ,1360

• ||>|| = ||⊥|| = 1

• ||C uD|| = ||C||+ ||D||+ 1,

• ||∃r.C|| = ||C||+ 1,

• ||C v D|| = ||C @∼ D|| = ||C||+ ||D||,

• ||C(a)|| = ||C||+ 1,1365

• ||r(a, b)|| = 3,

• ||A|| =
∑
C(a)∈A ||C(a)||+

∑
r(a,b)∈A ||r(a, b)||,

• ||T || =
∑
CvD∈T ||C v D||,

• ||D|| =
∑
C@∼D∈D

||C @∼ D||, and
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• ||K|| = ||A||+ ||T ||+ ||D||.1370

In the course of this section, we use both, the size of the encoding || · || and the standard set cardinality | · |
to be precise. Note that for the input DKB K, the size of K (||K||) is polynomial in the cardinality of K
(|K|), hence whenever some result is polynomial (exponential) in |K|, it will be in polynomial (exponential)
also in ||K||.

6.1. Upper Bounds for Nested Rational and Relevant Semantics1375

As by the previous strategy throughout this article, we introduce general algorithms to do the following:

1. Compute the minimal model completion of some typicality interpretation (be it based on a chain or
lattice domain), and

2. Compute a maximal typicality model, starting from some minimal typicality model (be it I(∆Krat) or
I(∆Krel)).1380

We can show termination, complexity and correctness of both procedures depending on the size of the
underlying typicality domain. Finally, it only remains to determine the size of ∆Krat and ∆Krel and instantiate
the general results from the main part of this section.

We present Algorithm 3 to decide the existence of the minimal model completion of a given typicality
interpretation I = (∆K, ·I) over DKB K, that satisfies Condition 1 of standard typicality interpretations1385

(from Definition 4.3). The algorithm is constructive; it computes the minimal model completion if it exists.

Algorithm 3 takes as an input an interpretation satisfying Condition 1 of Def. 4.3 and a DKB K =
(A, T ,D) and has the goal to extend I, such that all GCIs (for all d ∈ ∆K) and all DCIs (all U ⊆ D for
every dUF ∈ ∆K) are satisfied for the appropriate domain elements, in a completion-like fashion. It utilises1390

the functions UnresolvedC() and UnresolvedI() to determine a kind of ToDo list of GCIs and DCIs that
are currently violated. One iteration of the main while loop (Line 9) selects one domain element with
an unresolved GCI (DCI) and extends “the current” interpretation to then satisfy this GCI (DCI). Note,
that the algorithm does not consider ABox assertions. Recalling the approach to decide defeasible instance
queries under nested semantics, you can see that the construction of an ABox-interpretation uses classical1395

reasoning to eventually satisfy the ABox assertions (i.e. I(∆K)∪IA,T |= A). During the typicality upgrade
procedure, only extensions of the minimal typicality model are considered, hence no assertions in A can be
violated during the upgrade phase.

Proposition 6.1. Let I = (∆K, ·I) be a typicality interpretation (over DKB K) that satisfies Condition 1
of Definition 4.3. Algorithm 3 (Minimal Model Completion) terminates in polynomial time in |∆K| on the1400

inputs I,K.

Proof. It is clear that (i) at any given point in Algorithm 3, Θ ⊆ ∆K×(T ∪D), which has |∆K|∗(|T |+ |D|)
as an upper bound, i.e. it is polynomial in the size of ∆K. Lines 16–18 are well-defined, as Ej , E ∈ Qc(K)
for 1 ≤ j ≤ l, hence d∅Ej , d

∅
E exist by the definition of a typicality domain. Note, that in the following, the

domain element d, can be either a concept (dUF ) or individual (da) representative. For (d,G ./H) ∈ Θ at1405

iteration x, for H = A1 u · · · u Ak u ∃r1.E1 u · · · u ∃rl.El, it holds that d ∈ AIx+1

i for all 1 ≤ i ≤ k, by
the construction of σ1 (Line 15). Because the input I satisfies Condition 1 of Definition 4.3 (dUF ∈ F I) and
it holds that Ix ⊆ Ix+1 (x ≥ 1), we know that d∅Ej ∈ E

Ix+1

j (Proposition 4.4). Due to the definition of
σ2 (Line 16) it then follows that d ∈ (∃rj .Ej)Ix+1 for all 1 ≤ j ≤ l and thus d ∈ HIx+1 . Hence, (ii) each
iteration of the while loop resolves one unsatisfied GCI or DCI for one domain element in ∆K. That means,1410

once the selected pair (d,G ./H) has been treated in the while loop (say at iteration x), d always belongs
to both GIy and HIy (y > x) because the substitutions defined in Lines 15–17 only extend Ix. Combining
observations (i) and (ii), we can see that the while loop can be entered at most |∆K| ∗ (|T |+ |D|) times. The
sets returned by UnresolvedC() and UnresolvedI() can each be computed in polynomial time in the size
of both inputs (i.e. |∆K| and ||K||). Therefore, Algorithm 3 terminates in any case after polynomial time in1415

|∆K|+ ||K||. �
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Algorithm 3: Minimal Model Completion

1 Function UnresolvedC(J , K)
Input: J = (∆K, ·J ): a typicality interpretation, K = (A, T ,D): a DKB

2 return {(dUF , G ./H) ∈ ∆K × (T ∪ U) | dUF ∈ GJ ∧ dUF 6∈ HJ }
3 Function UnresolvedI(J , K)

Input: J = (∆K, ·J ): a typicality interpretation, K = (A, T ,D): a DKB
4 return {(da, G v H) ∈ ∆K × T | da ∈ GJ ∧ da 6∈ HJ }
5 Algorithm Minimal Model Completion

Input: I = (∆K, ·I): a typicality interpretation satisfying Condition 1 of Definition 4.3,
K = (A, T ,D): a DKB

Output: mmc(I)
6 Θ := UnresolvedC(I, K) ∪ UnresolvedI(I, K)
7 I1 := I
8 x := 1
9 while Θ 6= ∅ do

10 if ∃(d,G v ⊥) ∈ Θ then
11 return false
12 end
13 Select (d,G ./H) from Θ.
14 W.l.o.g. H = A1 u · · · uAk u ∃r1.E1 u · · · u ∃rl.El for Ai ∈ sigC(K) and

Ej ∈ Qc(K) (1 ≤ i ≤ k, 1 ≤ j ≤ l).
15 σ1 := {Ai/AIxi ∪ {d} | 1 ≤ i ≤ k}
16 σ2 := {rj/rIxj ∪ {(d, d∅Ej )} | 1 ≤ j ≤ l}
17 σ3 := {r/rIx[σ1∪σ2] ∪ {(d, d∅E) | d ∈ (∃r.E)Ix[σ1∪σ2], E ∈ Qc(K)} | r ∈ sigR(K)}
18 Ix+1 := Ix[σ1 ∪ σ2][σ3]
19 Θ := UnresolvedC(Ix+1,K) ∪ UnresolvedI(Ix+1,K)
20 x := x+ 1

21 end
22 Ifin := Ix
23 return Ifin

Next we show soundness and completeness of Algorithm 3. More precisely, we show that Algorithm 3 either
computes the minimal model completion or returns false, if no model completion exists. For an interpretation
J to be a model completion of the input I to Algorithm 3, it has to satisfy in particular A, for the input
K = (A, T ,D). As described before, this algorithm will only be used during the typicality upgrade phase,1420

hence eventually, the input I will always be an extension of a minimal model completion (over the full DKB).
That such a minimal typicality model satisfies A follows directly from Lemma 5.2, therefore any extension
of a minimal typicality model satisfies A as well (Prop. 4.4). Of course the complexity of computing the
minimal typicality model as well as an ABox model will be discussed in the specific sections for rational and
relevant semantics, here we focus on general results for the typicality upgrade procedure.1425

Proposition 6.2. For a typicality interpretation I = (∆K, ·I) over the DKB K = (A, T ,D) satisfying
Condition 1 of Definition 4.3 and I |= A, either mc(I) = ∅ or Ifin as returned by Algorithm 3 is the
minimal model completion of I.

Proof. Since I |= A, Proposition 4.4 and I ⊆ Ix (x ≥ 1) imply Ifin |= A, hence, in order to show that
Ifin |= K, we need to show that Ifin |= T and Ifin, dUF |= U . For Ifin to be a model completion of the1430

input I, we also need to show that Ifin is standard.
We begin by proving an intermediate claim that will aid us in proving this proposition. We claim that the

set of model completions of the input I and all extensions Ix (x ≥ 1) computed during a run of Algorithm
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3 on I and K, is the same throughout the run. Eventually this allows to conclude that if Ifin is a model
completion of itself, it is the minimal model completion w.r.t. its set of model completion and therefore the1435

minimal model completion of the input I.

Claim: mc(Ix) = mc(Ix+1) for (x ≥ 0).
The “⊇” direction follows from the fact that Ix ⊆ Ix+1, which is easy to see from Lines 15 to 18 in
Algorithm 3. For “⊆” we have to show that one application of the while loop on Ix preserves all model
completions for Ix+1. For J ∈ mc(Ix) it holds that Ix ⊆ J by 1 in Def. 4.23. Because d ∈ GIx holds1440

for all (d,G ./H) ∈ UnresolvedC(Ix) ∪ UnresolvedI(Ix) it follows from Claim 1 in Proposition 4.4
that d ∈ GJ . Since J |= K (Def. 4.23), in either case, G v H ∈ T and G @∼ H ∈ U (if applicable for
d = dUF ), d has to satisfy G./H in J , and since d ∈ GJ it must hold that d ∈ HJ . We distinguish
two cases for the concept H:

1. H = A1 u · · · uAk u∃r1.E1 u · · · u ∃rl.El (this structure can be assumed w.l.o.g. if H 6= ⊥, which1445

is covered by the second case)
In this case, d ∈ AJi for all 1 ≤ i ≤ k and d ∈ (∃rj .Ej)J for all 1 ≤ j ≤ l. Hence, by
Condition 3 of model completions (Def. 4.23) it holds that (d, d∅Ej ) ∈ rJj . The element d∅Ej
exists in the typicality domain by its definition and the fact that Ej ∈ Qc(K). The difference
between Ix and Ix+1 is only determined by Lines 15–17, which is in the first step, adding d to1450

the extension of all Ai (1 ≤ i ≤ k, Line 15) and adding role successors (d, d∅Ej ) to the extension
of all rj (1 ≤ j ≤ l, Line 16). At this point, it is shown that Ix[σ1 ∪ σ2] ⊆ J holds. Therefore,
Proposition 4.4 implies (∃r.E)Ix[σ1∪σ2] ⊆ (∃r.E)J for all r ∈ sigR(K) and E ∈ Qc(K). Since J
is standard, all edges (d, d∅E) that are being added to Ix[σ1 ∪ σ2] by σ3 already exist in J , hence
Ix[σ1 ∪ σ2][σ3] = Ix+1 ⊆ J , and therefore, J ∈ mc(Ix+1).1455

2. H = ⊥.
Using the same argument as before, all model completions J of Ix have d ∈ GJ and must
therefore satisfy d ∈ ⊥J . Since the latter is not possible, there cannot be any model completions
of Ix and thus extending it in any way, in particular extending it to Ix+1 does not allow for new
model completions. It follows that mc(Ix) = mc(Ix+1) = ∅.1460

This concludes the proof of the claim.

By allowing x to be any iteration in this claim, it is clear that mc(I1) = mc(I2) = . . . = mc(Ix) for
all x ≥ 1 until termination of Algorithm 3, which is ensured by Proposition 6.1. The claim implies two
things: first, when there is an iteration x such that (d,G v ⊥) ∈ UnresolvedC(Ix) ∪ UnresolvedI(Ix),
then mc(Ix) = ∅ and thus mc(I) = ∅. And secondly, assume there is no iteration x with (d,G v ⊥) ∈1465

UnresolvedC(Ix) ∪ UnresolvedI(Ix). Upon termination, UnresolvedC(Ifin) = UnresolvedI(Ifin) = ∅
which implies Ifin |= T as well as Ifin, dUF |= U , hence Ifin |= K, since Ifin |= A has been established in
the beginning.

It remains to show that Ifin satisfies Condition 3 of 4.23. In general, consider any typicality interpretation
J satisfying Condition 1 of Definition 4.3 and σ = {r/rJ∪{(d, d∅E) | d ∈ (∃r.E)J , E ∈ Qc(K)} | r ∈ sigR(K)}1470

(Line 17). It clearly holds that J [σ] is a standard typicality interpretation. As discussed before, Ifin also
satisfies Condition 1 of Definition 4.3 and since it has been obtained by applying σ3 (Line 17) to some
previous interpretation, it must be standard.

Finally, it holds that Ifin ∈ mc(Ifin), which implies Ifin ⊆ J for all J ∈ mc(Ifin) and thus Ifin =
mmc(Ifin). Since mc(I) = mc(Ifin) (by our claim), it holds that Ifin = mmc(I). �1475

The following corollary combines the results from Propositions 4.24 and 6.1.

Corollary 6.3. For a standard typicality interpretation I = (∆K, ·I) over the DKB K = (A, T ,D) (satis-
fying the ABox A), the minimal model completion mmc(I) can be computed in polynomial time in the size
of ∆K, if it exists. Likewise, its existence can be decided in polynomial time.
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To construct the minimal typicality model for both the rational and relevant typicality domain (over
the empty ABox), we need to decide the subsumptions FU vTU (F ) A and FU vTU (F ) ∃r.E for all dUF ∈ ∆Kx
(x ∈ {rat, rel}), A ∈ sigC(K), r ∈ sigR(K) and E ∈ Qc(K). These are

|∆Kx | ∗ (|sigC(K)|+ |sigR(K)| ∗ |Qc(K)|),

i.e. polynomially many classical subsumption checks in |∆Kx | and ||K|| (|TU (F )| is linear in |K|). For K =
(A, T ,D), the interpretation IA,T has a domain of size |sigI(A)|+ |Qc(K)|, i.e. linear in ||K||. A number of
classical instance checks (A, T ) |= A(a) and (A, T ) |= (∃r.E)(a) are required for every element da ∈ ∆IA,T .
To be specific, the number of classical entailment checks required to construct the ABox interpretation is(

|sigC(K)|+
(
|sigR(K)| ∗ |Qc(K)|

))
∗ |sigI(A)|,

i.e. polynomially many in ||K||. When combining a minimal typicality model I(∆K) over an empty ABox1480

and an ABox interpretation for the same knowledge base K = (A, T ,D), the size of the combined domain is
dominated by the size of ∆K,13 i.e. ∆I(∆K)∪IA,T is only linearly (in |K|) bigger than ∆K. Recall that, both
I(∆K) and I(∆K) ∪ IA,T are considered minimal typicality models for ∆K over K = (A, T ,D).

Proposition 6.4. The number of maximal typicality models for a given minimal typicality model I =
(∆K, ·I) is at most exponential in |∆K|.1485

Proof. Every maximal typicality model (obtained with the fixpoint of the T -operator) is a minimal model
completion of some typicality interpretation. Secondly, the maximum number of role edges in ∆K using only
role names from sigR(K) is |∆K×∆K| ∗ |sigR(K)|, which is polynomial in |∆K| (and ||K||). Hence, the upper
bound on the number of minimal model completions using distinct role edge sets is therefore exponential
in |∆K| (all subsets of all possible role edges) and the size of typmax({I}) is clearly contained in this upper1490

bound. �

This upper bound on maximal typicality models seems high, but it shall suffice for showing the overall
upper bound on the complexity of deciding nested defeasible subsumptions as well as instance checks. For
exponentially many maximal typicality models, it takes at least exponential time to compute and iterate
over all maximal typicality models and check whether the queried subsumption is entailed by all of them.1495

The alternative is to guess a maximal typicality model of the minimal typicality model I (be it I(∆K) or
I(∆K) ∪ IA,T if applicable), which is a structure of polynomial size in |∆K| and check whether it does not
satisfy the query. This provides a procedure for deciding the complement of our initial problem, i.e. non-
entailment of a defeasible subsumption query or instance check. Due to the intricate interplay between the
“operations” typicality extension and minimal model completion for constructing typmax({I}) it is difficult1500

to decide whether a guessed extension J of I has been obtained using only these operations, i.e. does
not contain arbitrary (not obtained through typicality extension or minimal model completion) role edges.
Therefore instead of guessing a maximal typicality model, we iteratively guess one typicality extension and
compute its minimal model completion in polynomial time (in |∆K|) using Algorithm 3 until we reach a
maximal typicality model.1505

Proposition 6.5. For a minimal typicality model I = (∆K, ·I) over the DKB K = (A, T ,D), Algorithm 4
terminates in polynomial time in |∆K| for the inputs I,K.

Proof. Every iteration of the while loop in Algorithm 4 strictly extends the current interpretation, i.e.
Ji ⊂ Ji+1, by at least one role edge. That is, there exists an r ∈ sigR(K) such that rJi ⊂ rJi+1 . Since there
are only |∆K|2 ∗ |sigR(K)| distinct role edges possible in I, such an extension can be constructed at most a1510

polynomial number of times in |∆K|.

13As long as the size of ∆K is not sub-linear in ||K||.
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Algorithm 4: Guess the construction of a maximal typicality model

Input: I = (∆K, ·I): a minimal typicality model, K = (A, T ,D): a DKB
Output: A J ∈ typmax({I})

1 J0 := I
2 i := 0
3 while Ji is typicality extensible do
4 Guess a J ′i ∈ typ(Ji) such that mc(J ′i ) 6= ∅
5 Ji+1 := mmc(J ′i )
6 i := i+ 1

7 end
8 Jfin := Ji
9 return Jfin

Since computing a model completion (Line 5) has been shown to require polynomial time in |∆K| (Propo-
sition 6.1), it remains to show that the condition for the while loop can be checked in polynomial time in
|∆K|. For every typicality interpretation J , there are only polynomially many (in |∆K|) covering inter-
pretations in typ(J ), i.e. the ones minimal w.r.t. ⊂. For each one, Algorithm 3 can check in polynomial1515

time whether they admit a model completion. If none of them does, it is clear that no other (even bigger)
typicality extension admits a model completion. �

Proposition 6.5 shows that Algorithm 4 runs in polynomial time. Because it executes a non-deterministic
guessing step, it is an NP algorithm. It remains to show that the minimal model completion that is finally
returned by Algorithm 4 is actually a maximal typicality model of the input.1520

Proposition 6.6. For a minimal typicality model I = (∆K, ·I) over the DKB K = (A, T ,D) and the
interpretation Jfin as returned by Algorithm 4 over the inputs I,K, it holds that Jfin ∈ typmax({I}).

Proof. First of all, the guessing step in Line 4 is sound. The condition for the while loop ensures that an
appropriate typicality extension exists for Ji. After termination, Jfin is not typicality extensible, i.e. ¬∃J ′ ∈
typ(Jfin).mc(J ′) 6= ∅. In case I is not typicality extensible, Jfin = I and clearly Jfin ∈ typmax({I}).1525

It remains to show that there is a k ≥ 1 s.t. Jfin ∈ T k({I}).
Let n−1 be the final iteration of Algorithm 4, i.e. Jfin = Jn. We show that for every Ji (1 ≤ i ≤ n), there

exists a k ≥ 1 s.t. Ji ∈ T k({I}) by induction on i. For i = 1, let J ′0 be the guessed interpretation in typ(I)
with mc(J ′0) 6= ∅. Applying the T -operator to a singleton set is deterministic and under the assumption that
I is typicality extensible, we obtain the set T ({I}) = {mmc(J ) | J ∈ typ(I)∧mc(J ) 6= ∅}, clearly showing1530

that for the guessed J ′0, J1 = mmc(J ′0) ∈ T 1({I}). For the induction step, assume ∃k ≥ 1.Ji ∈ T k({I})
and that Ji is typicality extensible. Ji has to be selected by the definition of the T -operator at some “time”
l > k before reaching the fixpoint of T . It is not hard to see that T ({Ji}) ⊆ T l({I}), thus the argument
from the induction start shows that Ji+1 = mmc(J ′i ) ∈ T ({Ji}) ⊆ T l({I}). From the induction step, it
directly follows that a k ≥ 1 such that Jfin ∈ T k({I}) exists for Jfin as well. Jfin not being typicality1535

extensible then implies that Jfin ∈ Tm({I}) for all m ≥ k, in particular Jfin ∈ typmax({I}). �

Using Algorithm 4 we can describe a simple procedure for checking the complement of defeasible sub-
sumption query entailment and defeasible instance checking. A defeasible subsumption query C @∼ D is
not entailed by a DKB K under rational (relevant) semantics iff ∃J ∈ typmax({I(∆Krat)}).d

Di
C 6∈ DJ for

the smallest i with dDiC ∈ ∆Krat (∃J ∈ typmax({I(∆Krel)}).d
DC
C 6∈ DJ for relevant semantics, respectively).1540

Likewise, an instance check C(a) is not successful w.r.t. a DKB K = (A, T ,D) under rational (relevant)
semantics, iff ∃J ∈ typmax({I(∆K) ∪ IA′,T ∪TD}).J 6|= C(a) (rational: ∆K = ∆Krat, A′ = Âsrat; relevant:
∆K = ∆Krel, A′ = Âsrel).

After having established the general results for minimal model completion and maximising typicality
based on the size of the typicality domain, we can investigate this size for both rational and relevant semantics1545
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and show the specific upper bound on both problems for defeasible instance checking and subsumption
entailment.

6.1.1. Entailment under Rational Semantics

The problem of deciding rational entailment (defeasible subsumptions and instance checks under nested1550

rational semantics) has as an input a DKB K = (A, T ,D) and a defeasible subsumption query K |=(rat,nest)

C @∼ D or instance check K |=(rat,nest) C(a). Using the same argument as in [20] we can assume that C and
D are syntactically contained in K. Therefore we consider only the size of K in the investigations towards
the complexity of this problem.

In the beginning of this article, we proved a claim from [4], showing that the complexity of computing1555

the partition of the DBox for rational semantics resides in the same complexity class as deciding classical
subsumption in the underlying description logic, even for EL⊥. Here, classical subsumption entailment can
be decided in polynomial time, as we are restricted to EL⊥ [14].

Proposition 6.7. The partition(D) = (E1, . . . , En) can be computed in polynomial time and n ≤ |D|.

Using this result, we show that for a DKB K as the input (assume the query to be syntactically contained1560

in K), the size of the rational domain is polynomial in ||K||. This size determines the overall complexity of
nested rational semantics based on the previously obtained general results. We essentially instantiate the
previous results with a specific domain. .:

Proposition 6.8. For a given DKB K = (A, T ,D) and partition(D) = (E1, . . . , En), the size of the rational
typicality domain ∆Krat = {dDiF | 1 ≤ i ≤ n,Di =

⋃n
j=iEj , F ∈ Qc(K),Di u F 6vT ⊥} is polynomial in ||K||1565

and can be computed in polynomial time in ||K||.

Proof. It is not hard to see that |∆Krat| ≤ |Qc(K)|∗|partition(D)|, where |Qc(K)| ≤ ||K|| and |partition(D)| ≤
|D|, thus the size of |∆Krat| is at most quadratic in the size of the input. Furthermore, ∆Krat can be computed
using at most a polynomial number of classical entailment checks of the type Di u F 6vT ⊥, each of which
can be computed in polynomial time using Lemma 3.5 and [14]. �1570

We show the complexity upper bound for both defeasible instance and subsumption checking under
nested rational semantics.

Theorem 6.9. For a DKB K = (A, T ,D), entailment of a defeasible subsumption query C @∼ D and a
defeasible instance check C(a) can be decided in co-NP–Time under nested rational semantics.

Proof. The minimal typicality model I(∆Krat) can be constructed in polynomial time in ||K|| by doing a
polynomial number of classical subsumption checks for a number of domain elements that is polynomial in
||K|| (Proposition 6.8). The ABox extension Âsrat can be computed with at most |sigI(A)|∗ |partition(D)| (at
most quadratic in ||K||) consistency checks (polynomial for EL⊥) and its size is at most |A|+(|sigI(A)|∗ |D|),
i.e. quadratic in |K|. Hence, the consistency checks are based on a knowledge base that is at most quadratic
in the input DKB (c.f. Alg. 1). The extended TBox T ∪ TD is of size |T | + |D| (linear in |K|). Let K′ =

(Âsrat, T ∪ TD,D). K′ is at most quadratic in |K|. Additionally, sigR(K′) = sigR(K), sigI(Âsrat) = sigI(A)
and Qc(K′) = Qc(K) (|sigC(K′)| = |sigC(K)|+ |D|). The ABox interpretation IÂsrat,T ∪TD has a domain of
size |sigI(A)|+ |Qc(K)|. Therefore, it requires at most

|sigI(A)| ∗
(
|sigC(K)|+ |sigR(K)| ∗ |Qc(K)|

)
many classical entailment checks (using K′) to compute IÂsrat,T ∪TD . To summarise, the minimal typicality1575

model I(∆Krat) ∪ IÂsrat,T ∪TD can be computed in polynomial time in ||K|| and is of polynomial size in ||K||
(dominated by ∆Krat). A maximal typicality model of I(∆Krat) ∪ IÂsrat,T ∪TD can be constructed using Algo-
rithm 4 in NP–Time by Proposition 6.5. Note, that model completions are constructed w.r.t. (TD,D), which
is linear in the cardinality of K. Finally, checking non-entailment of C @∼ D or C(a) for a given typicality
interpretation is linear in the size of the domain, hence providing an overall co-NP–Time procedure for1580

deciding nested rational entailment. �
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6.1.2. Entailment under Relevant Semantics
The main differences between nested rational and nested relevant semantics are the underlying typicality

domains and the respective default assumption extensions of the ABox. The relevant typicality domain con-
tains O(2||K||) domain elements. Any of the discussed inferences requires to construct the minimal typicality1585

model (empty ABox) over ∆Krel, which uses an exponential number of classical subsumption checks (in ||K||).
The maximum number of possible role edges over the relevant domain is η = |∆Krel|2 ∗ |sigR(K)|, which,
for an exponential number of domain elements, is double exponential in ||K||. A constructive enumeration
of all maximal typicality models would therefore run in 2-EXP–Time. Alternatively, the guess and check
approach can be used here as well to determine non-entailment of defeasible queries. Still, the construction1590

of a maximal typicality model of exponential size (number of role edges) will be guessed using Algorithm
4. Luckily this does not result in a 2-EXP–Time procedure, but it requires to compute a minimal model
completion (exponential in ||K||, for the exponential ∆Krel) up to η times. Deciding defeasible instance checks
based on nested relevant semantics, requires always to compute the minimal typicality model over ∆Krel first,
as well as maximise a typicality interpretation that contains I(∆Krel), i.e. is always at least as complex as1595

deciding defeasible subsumption.

Proposition 6.10. The relevant domain ∆Krel = {dUF | U ⊆ D,U u F 6vT ⊥} is of size exponential in ||K||
and can be computed in exponential time in ||K||.

Proof. We have |∆Krel| ≤ |Qc(K)| ∗ 2|D|, due to an analogous argument as in Proposition 6.8. The expo-
nential comes from the fact that we allow representative domain elements for any subset of D. Determining1600

which subsets of D are consistent with every F ∈ Qc(K) requires exponentially many classical subsumption
checks, each of which can be determined in polynomial time. �

Theorem 6.11. For a DKB K = (A, T ,D), defeasible entailment of a subsumption query C @∼ D and an
instance check C(a) can be decided in co-NEXP–Time under nested relevant semantics.

Proof. The minimal typicality model I(∆Krel) can be constructed in exponential time in ||K|| by doing a1605

linear number of classical subsumption checks (P–time) for a number of domain elements exponential in ||K||
(Proposition 6.10). The extended ABox Âsrel (Alg. 2) is constructed on top of Âsrat (polynomial time and
size in |K|), using |sigI(A)| many extension steps that each require the computation of a maximal subset
of D that is consistent with an individual, D(A′,T ∪TD),a, which is exponential for EL⊥ knowledge bases
(A′, T ∪ TD). A′ has the same size-bound as Âsrel which in turn, is the same upper bound as for the size of1610

Âsrat (at most “all of the DBox” added for every individual). The remaining deliberations for IÂsrel,T ∪TD are
analogous to the proof of Theorem 6.9. Thus I(∆Krel)∪IÂsrel,T ∪TD is of exponential size in ||K||, dominated by
∆Krel. A maximal typicality model of I(∆Krel)∪IÂsrel,T ∪TD can be constructed using Algorithm 4 in NEXP–
Time by Proposition 6.5. Note, that model completions are constructed w.r.t. (TD,D), which is linear in the
size of K. Finally, checking non-entailment of C @∼ D or C(a) for a given typicality interpretation is linear1615

in the size of the domain (exponential), hence providing an overall co-NEXP–Time procedure for deciding
nested relevant entailment. �

6.2. Lower Bound on Deciding Rational Entailments
We prove co-NP-hardness for deciding nested rational subsumption entailment by a reduction from (1-

in-3)-positive 3sat, which is known to be NP–compl. [23]. Satisfiability of a (1-in-3)-positive 3sat formula1620

is reduced to non-entailment of a defeasible subsumption query under nested rational semantics, hence the
co-NP-hardness. We consider only non-entailment of defeasible subsumption at first, and add a comment
to how this reduction proof applies to non-entailment of defeasible instance checking under nested rational
semantics in the end.
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The reduction from (1-in-3)-positive 3sat. A (1-in-3)-positive 3sat problem is given with a propositional1625

formula ϕ in conjunctive normal form with clauses of size 3. The general representation for a (1-in-3)-positive
3sat problem with n clauses and k propositional variables V = {x1, . . . , xk} is ϕ =

∧n
i=1(xi1 , xi2 , xi3) s.t.

i1, i2, i3 ∈ {1, . . . , k} (i1 6= i2 6= i3) for all 1 ≤ i ≤ n. (xi1 , xi2 , xi3) is called a clause in ϕ. Such an instance
ϕ is satisfied by a truth assignment if in every clause in ϕ there is exactly one propositional variable that is
assigned to true (note, all variables occur as a positive literal). More formally, an assignment for a formula1630

ϕ is a function σ : V → {>,⊥} that assigns every propositional variable occurring in ϕ either > or ⊥. σ is
extended to apply to a (1-in-3)-positive 3sat formula s.t. σ̂(ϕ) = > iff for all i ∈ {1, . . . , n} there is exactly
one xij (j ∈ {1, 2, 3}) s.t. σ(xij ) = >. Satisfiability for (1-in-3)-positive 3sat is NP–compl. [23] and thus,
if successfully reduced to non-entailment of defeasible subsumption, shows co-NP-hardness of our decision
problem.1635

Given ϕ an instance of (1-in-3)-positive 3sat, we reduce satisfiability to unsatisfiability of a query under
nested rational entailment. We construct the defeasible knowledge base Kϕ with

NC ={A,B,X} ∪ {Ci | 1 ≤ i ≤ n} (2)
NR ={s, r1, . . . , rk} (3)

where k is the number of distinct propositional variables occurring in ϕ and n is the number of clauses
occurring in ϕ. W.l.o.g. we assume a linear order on the clauses in ϕ, simply to reference them by indices
1 ≤ i ≤ n. Domain elements that are referenced in the following occur in the rational domain, which is
shown after the full construction of Kϕ. The main idea is to let upgrades of role edges rj correspond to
the assignment of the propositional variable xj . σ(xj) = > translates to a specific rj edge (d∅A, d

∅
B) to be1640

upgraded to (d∅A, d
D
B), where for a satisfying assignment σ, our specific query is not entailed. The DBox

shall be rather small
D = {> @∼ X} (4)

while the remainder of the reduction can be achieved using the TBox and the query. It is easy to see that
the partition of the DBox according to [4] contains only E1 = D, hence the chain of decreasing DBox subsets
D0 = D and D1 = ∅. This means that the resulting typicality interpretations has two levels of typicality.
The structure of the resulting minimal typicality model I(∆

Kϕ
rat ) is mostly influenced by

Tstruct = {∃s.A v >, (5)
A uX v ⊥, (6)
A v ∃s.B, (7)
A v ∃r1.B u . . . u ∃rk.B} (8)

where (5) ensures that the representative d∅A occurs in ∆
Kϕ
rat , (6) is optional but makes things easier later

on by ensuring that dDA 6∈ ∆
Kϕ
rat . (7) is required “in the end”, to ensure that the query is not entailed iff ϕ

is satisfiable and (8) prepares the maximisation procedure by introducing all ri edges from d∅A to d∅B into
I(∆

Kϕ
rat ). We continue with two kinds of TBoxes capturing information about each clause of ϕ.

T iconst = {∃ri1 .X u ∃ri2 .X v ⊥, (9)
∃ri2 .X u ∃ri3 .X v ⊥, (10)
∃ri1 .X u ∃ri3 .X v ⊥} (11)

and

T iclause = {∃ri1 .X v Ci, (12)
∃ri2 .X v Ci, (13)
∃ri3 .X v Ci } (14)
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where i1, i2, i3 ∈ {1, . . . , k} and the indices correspond to those from the i-th clause in ϕ. T iconst describes the
disjointness constraints for the typicality upgrade procedure. For instance the clause (x1, x3, x5) prohibits
any pair of these three variables to be set to > at the same time. Likewise the constraints ∃r1.Xu∃r3.X v ⊥,1645

∃r3.Xu∃r5.X v ⊥, ∃r1.Xu∃r5.X v ⊥ prohibit two role upgrades of the roles r1, r3, r5 to occur at the same
time, since the typical concept representatives satisfy > @∼ X. The TBox T iclause creates a kind of marker at
the domain element d∅A. For a maximal typicality model I, d∅A ∈ CIi holds iff for clause i in ϕ at least one
of its variables is assigned >. Together T iconst and T iclause ensure that C1, . . . , Cn are satisfied by d∅A when
every clause in ϕ has at least one and at most one (i.e. exactly one) variable set to > (i.e. role upgraded to1650

contain (d∅A, d
D
B)).

The role edge (d∅A, d
∅
B) ∈ sI(∆

Kϕ
rat ) is used to invert the query entailment, to be explicit, the query is

A @∼ ∃s.X (15)

and the inverting is ensured by the following disjointness constraint

TQ = {∃s.X u C1 u · · · u Cn v ⊥}. (16)

TQ ensures that the s successor (d∅A, d
∅
B) can only be upgraded if not all clauses are satisfied. Overall, we

define1655

Kϕ = (Tstruct ∪
n⋃
i=1

(T iconst ∪ T iclause) ∪ TQ,D). (17)

As stated before, C1, . . . , Cn are satisfied by d∅A in a maximal typicality model that corresponds to a satisfying
assignment of the variables in ϕ. All Cis being satisfied at d∅A then prohibits the edge (d∅A, d

∅
B) ∈ sI(∆

Kϕ
rat ) to

be upgraded, resulting in non-entailment of the query. Of course the s edge could be upgraded prematurely,
simply prohibiting some rj upgrade, however to show non-entailment, the existence of one maximal typicality
model as a counterexample is sufficient.1660

Complexity and Correctness of the Reduction. We proceed by showing that this reduction is linear and that
satisfiability of ϕ corresponds to non-entailment of the constructed query under nested rational semantics.

Proposition 6.12. ||Kϕ|| is

1. linear in |ϕ| and

2. can be constructed in linear time (in |ϕ|).1665

Proof. For ϕ =
∧n
i=1(xi1 , xi2 , xi3), |ϕ| = 3 ∗ n. For the constant part in Kϕ, note that ||D|| = 2 and the

query ||A @∼ ∃s.X|| = 3. The TBox parts Tstruct and TQ are linear in |ϕ|, as ||Tstruct|| = 2k + 10 for k, the
amount of propositional variables used in ϕ and ||TQ|| = n + 3. The TBox parts T iconst and T iclause have
the constant size ||T iconst|| = 15 and ||T iclause|| = 9 for every i. Therefore the total size of T amounts to
||T || = 2k + 10 + n · (15 + 9) + n+ 3 = 22n+ 2k + 13 which (since k ≤ |ϕ|) is clearly linear in |ϕ|.1670

The algorithm constructing Kϕ needs to iterate over every clause in ϕ exactly once, therefore covering
the second claim. �

We continue to prove the main claim required for the desired hardness result.

Lemma 6.13. Formula ϕ is satisfiable iff Kϕ 6|=(rat,nest) A @∼ ∃s.X.

Proof. For Kϕ = (T ,D) it is obvious that partition(D) = (D), hence we investigate two levels of typicality1675

and domain elements satisfy either D or ∅. Clearly, dDA 6∈ I(∆
Kϕ
rat ) (since Au (¬>tX) vTstruct ⊥). Thus, d∅A

is the most typical concept representative of A (i.e. least i ∈ {1, 2} for D1 = D, D2 = ∅ s.t. dDiC ∈ ∆
Kϕ
rat ) and

therefore the right-hand side of the equivalence in this lemma is determined by investigating the element
d∅A, i.e.

∃J ∈ typmax({I(∆
Kϕ
rat )}).d∅A 6∈ (∃s.X)J . (18)

To prove this lemma, we show both directions,1680
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(i) If ϕ is satisfiable then (18)

(ii) If (18) then there is a satisfying assignment for ϕ

I(∆
Kϕ
rat ) is uniquely determined, it has the following definitions due to the construction of Kϕ (note

Qc(Kϕ) = {A,B,X}) and it is depicted in Figure 4:

• ∆
Kϕ
rat = {d∅X , dDX , d∅A, d∅B , dDB}1685

• AI(∆
Kϕ
rat ) = {d∅A}

• BI(∆
Kϕ
rat ) = {d∅B , dDB}

• XI(∆
Kϕ
rat ) = {d∅X , dDX , dDB}

• tI(∆
Kϕ
rat ) = {(d∅A, d∅B)} (t ∈ {s, r1, . . . , rk})

One can verify that the minimal typicality model for Kϕ = (T ,D) is the same as that for K′ = (Tstruct,D)1690

and due to the simple nature of Tstruct it is not hard to check the respective extensions of concept and role
names above to be correct.

All interpretations in typmax({I(∆
Kϕ
rat )}) extend I(∆

Kϕ
rat ) and therefore have the same domain. Thus, we

consider only this domain in the following. Towards proving (i), assume the assignment σ to satisfy ϕ. We
define several “partial” interpretations that, when combined (union), play certain roles. We call them partial1695

because they only contain the difference between the minimal typicality model for Kϕ and some extension
of it exhibiting desired features, as such they are not models of Kϕ themselves.

We begin with J σt1 = (∆
Kϕ
rat , ·J

σ
t1) such that

• rJ
σ
t1

i =

{
{(d∅A, dDB)} if σ(xi) = >
∅ otherwise

for 1 ≤ i ≤ k (for an example see Figure 5). Everything in sig(Kϕ) that not explicitly defined, is1700

interpreted as ∅, which is also the case for the remaining interpretation constructions in this proof.

It is easy to see that J σt1 contains only role edges that belong to TRI(∆
Kϕ
rat )

(ri) for some ri ∈ sigR(K)

(c.f. Definition 4.22) and therefore I(∆
Kϕ
rat ) ∪ J σt1 ∈ typ(I(∆

Kϕ
rat )) clearly holds. Furthermore, if σ is a

satisfying assignment for ϕ, for each clause (xj1 , xj2 , xj3) (j1, j2, j3 ∈ {1, . . . , k}) exactly one of the three
roles rj1 , rj2 , rj3 have a edge from d∅A to dDB in J σt1. The second “partial” interpretation we are using is1705

J σmmc = (∆
Kϕ
rat , ·J

σ
mmc) with

• CJ
σ
mmc

j = {d∅A} for all clause indices 1 ≤ j ≤ n

B

A

X

D ∅

B,X B

A

X X

s, r1, . . . , rk

B

A

X

D ∅

B,X B

A,C1, . . . , Cn

X X

s, r1, . . . , rk
r
2 , r

5 , ...

r2, r5, ...
r2
, r

5
, .
..

Figure 4: Minimal typicality model I(∆
Kϕ
rat ) (left) and (an example of) the maximal typicality model Jσ (right)
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• rJ
σ
mmc

i =

{
{(d∅A, d∅X)} if σ(xi) = >
∅ otherwise

, for all variable indices 1 ≤ i ≤ k.

J σmmc exhibits two features, it satisfies the concept Cj for the j-th clause in ϕ with d∅A for all clauses
(because σ is assumed to satisfy ϕ). Secondly, J σmmc contains the edge (d∅A, d

∅
X) for exactly the same

roles as were used in J σt1. We show that I(∆
Kϕ
rat ) ∪ J σt1 ∪ J σmmc = mmc(I(∆

Kϕ
rat ) ∪ J σt1). Condition 1

of Definition 4.23 is trivially satisfied, i.e. I(∆
Kϕ
rat ) ∪ J σt1 ⊆ I(∆

Kϕ
rat ) ∪ J σt1 ∪ J σmmc. It is not hard to check

whether I(∆
Kϕ
rat )∪J σt1∪J σmmc is a standard typicality interpretation. Condition 1 of Definition 4.3 (standard

interpretation) holds because of I(∆
Kϕ
rat ) ⊆ I(∆

Kϕ
rat ) ∪ J σt1 ∪ J σmmc and Proposition 4.4. The only role edges

that have to be inspected for checking Condition 2 of the standard property are those added by J σt1, since
the others already exist in I(∆

Kϕ
rat ) which is known to be standard. Each edge (d∅A, d

D
B) for some rj in

J σt1 results in d∅A ∈ (∃rj .X)I(∆
Kϕ
rat )∪J σt1 . Since J σmmc contributes for each such edge exactly one new edge

(d∅A, d
∅
X), Condition 2 of Definition 4.3 is clearly satisfied. It remains to show that I(∆

Kϕ
rat ) ∪ J σt1 ∪ J σmmc

satisfies Kϕ and that it is minimal w.r.t. all those properties. The DBox subsets are clearly still satisfied for
the respective domain elements and Tstruct is satisfied as well since the extensions of A and X remain as in
I(∆

Kϕ
rat ). To verify that T iclause is satisfied for every clause index 1 ≤ i ≤ n, we can see that

d∅A ∈ (∃rij .X)I(∆
Kϕ
rat )∪J σt1∪J

σ
mmc

iff (d∅A, d
D
B) ∈ rI(∆

Kϕ
rat )∪J σt1∪J

σ
mmc

ij
(∗)

iff σ(xij ) = > by the construction of J σt1.

Under the assumption that σ satisfies ϕ, this holds for exactly one rij (1 ≤ j ≤ 3) per clause index i, thus
d∅A is required to belong to the extension of each Ci (1 ≤ i ≤ n), which it does by the construction of J σmmc.1710

For T iconst, d∅A ∈ (∃rij .X u ∃ril .X)I(∆
Kϕ
rat )∪J σt1∪J

σ
mmc holds with an analogous condition as for (∗), which, for

σ satisfying ϕ, can never be the case for any clause index 1 ≤ i ≤ n and (j, l) ∈ {(1, 2), (1, 3), (2, 3)} because
otherwise there would be a clause with more than 1 variable mapped to > under σ. TQ remains satisfied
because d∅A has no s successor to an element belonging to the extension of X in I(∆

Kϕ
rat )∪J σt1∪J σmmc. Also,

no other domain element belongs to the extension of any Ci.1715

In order to check for minimality of I(∆
Kϕ
rat )∪J σt1∪J σmmc among mc(I(∆

Kϕ
rat )∪J σt1), we can only attempt

to remove role edges or d∅A from Cis introduced with J σmmc because otherwise Condition 1 of Def. 4.23 would
be violated. If we removed the edge (d∅A, d

∅
X) from the extension of some ri (1 ≤ i ≤ k) then we know that

for that i, d∅A ∈ (∃ri.X)I(∆
Kϕ
rat )∪J σt1 due to the construction of J σt1. It follows that the standard property

would not be satisfied for the reduced interpretation. Likewise, removing d∅A from the extension of some Cj1720

(1 ≤ j ≤ n) results in the fact that T jclause is not satisfied because d∅A ∈ (∃rjl .X)I(∆
Kϕ
rat )∪J σt1 for exactly one

1 ≤ l ≤ 3 due to the construction of J σt1 and the fact that σ satisfies ϕ.
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Figure 5: Examples for (from left to right) J σt1, J σmmc and J σt2
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It can be readily seen that I(∆
Kϕ
rat )∪J σt1∪J σmmc is typicality extensible, hence we define J σt2 = (∆

Kϕ
rat , ·J

σ
t2)

with

• rJ
σ
t2

i =

{
{(d∅A, dDX)} if σ(xi) = >
∅ otherwise

1725

for all 1 ≤ i ≤ k.

J σt2 contains exactly those role edges upgrading the edges (d∅A, d
∅
X) in I(∆

Kϕ
rat ) ∪ J σt1 ∪ J σmmc. Let Jσ =

I(∆
Kϕ
rat )∪J σt1∪J σmmc∪J σt2. With the construction of J σt2, is easy to see that Jσ ∈ typ(I(∆

Kϕ
rat )∪J σt1∪J σmmc).

Since d∅X belongs to exactly the same extensions as dDX (in all of the discussed interpretations I(∆
Kϕ
rat ), J σt1,

J σt2, J σmmc), it can be seen that for all concepts C with Qc(C) ⊆ Qc(Kϕ), the extensions in Jσ coincide with1730

those in I(∆
Kϕ
rat ) ∪ J σt1 ∪ J σmmc. Since I(∆

Kϕ
rat ) ∪ J σt1 ∪ J σmmc satisfies Conditions 2 and 3 of Definition 4.23

(model completion), so does Jσ, which implies Jσ ∈ mc(Jσ) which immediately implies Jσ = mmc(Jσ).
With the construction of Jσ and the definition of the T–operator, we can see that there must be some
l ≥ 2 such that Jσ ∈ T l({I(∆

Kϕ
rat )}). By showing that Jσ is not typicality extensible, we would have

shown that it remains in Tm({I(∆
Kϕ
rat )}) for all m ≥ l and thus Jσ ∈ typmax({I(∆

Kϕ
rat )}). Observe that1735

TRJσ (s) = TRJσ (ri) = {(d∅A, dDB)} for all those 1 ≤ i ≤ k where σ(xi) = ⊥. It is enough to check
for any single potential typicality upgrade whether it admits a model completion. W.l.o.g. we investigate
J ′ = Jσ[ri/r

Jσ
i ∪ {(d∅A, dDB)}] for any (single) 1 ≤ i ≤ k s.t. σ(xi) = ⊥. In ϕ there exists some clause

1 ≤ l ≤ n where xi occurs together with some xj such that σ(xj) = >, for σ satisfying ϕ. Since the
edge (d∅A, d

D
B) exists in rJσj by the construction of J σt1, such an upgrade would therefore have the effect1740

that d∅A ∈ (∃ri.X u ∃rj .X)J
′
which makes it impossible for J ′ and any extension of J ′ to satisfy T lconst.

Extending Jσ to J ′′ = Jσ[s := sJσ ∪ {(d∅A, dDB)}] results in the fact that d∅A ∈ (∃s.X)J
′′
which together

with the already established property of Jσ that d∅A belongs to the extension of every Ci (1 ≤ i ≤ n)
makes it impossible for J ′′ or any extension of J ′′ to satisfy TQ. Concluding the proof for (i), we have
shown that Jσ ∈ typmax({I(∆

Kϕ
rat )}) and for the most typical representative of A, i.e. d∅A, it is obvious1745

that d∅A 6∈ (∃s.X)Jσ , thus we have effectively constructed a counterexample to the entailment of the query
A @∼ ∃s.X.

For showing (ii), assume ∃J ∈ typmax({I(∆
Kϕ
rat )}).d∅A 6∈ (∃s.X)J and construct the assignment σJ from

J with
σJ (xi) = > iff (d∅A, d

D
B) ∈ rJi (19)

for all 1 ≤ i ≤ k. We continue the proof by contradiction. The assignment σJ does not satisfy ϕ iff there1750

is a clause in ϕ with index l ∈ {1, . . . , n} such that

(a) σJ (xl1) = σJ (xl2) = σJ (xl3) = ⊥, or

(b) two or more of the variables xl1 , xl2 , xl3 are mapped to > by σJ .

First, observe that (d∅A, d
D
B) 6∈ sJ (otherwise, J would satisfy A @∼ ∃s.X) and no typicality extension of J can

be completed into a model because otherwise J would not be maximal, especially J ′ = J [s/sJ ∪{(d∅A, dDB )}].1755

The reason for mc(J ′) = ∅ can only be d∅A ∈ (∃s.XuC1u· · ·uCn)J
′
(i.e. J ′ 6|= TQ), which implies d∅A ∈ C

J
l

for all 1 ≤ l ≤ n. Assuming there is a clause index l for which σ has the property proposed in (a), it is
not hard to see that J [Cl/∅] still satisfies T lclause since d∅A 6∈ (∃rlm .X)J for m ∈ {1, 2, 3}, contradicting
that J was reached with the T–operator (i.e. the typicality extension of I(∆

Kϕ
rat ) with the exact same set

of role edges as in J , has a minimal model completion that is strictly smaller than J ), hence contradicting1760

J ∈ typmax({I(∆
Kϕ
rat )}).

For (b) it follows immediately that J cannot be a model of T lconst because d∅A ∈ (∃rlm .X u∃rlo .X)J (for
some 1 ≤ m < o ≤ 3), again contradicting J ∈ typmax({I(∆

Kϕ
rat )}).

Since both (a) and (b) have lead to the contradiction of J being a maximal typicality model, it follows
that σJ is a satisfying assignment for ϕ, thus concluding the proof of (ii). �1765
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Rational Relevant

Propositional P–compl. in EXP

Nested co-NP–compl. in co-NEXP

Table 1: EL⊥ complexity results for reasoning under the DDL semantics characterised by {rat, rel} × {prop, nest}.

Consider a slight change in Kϕ where ∃s.A v > is not contained in Tstruct and the ABox A = {A(a)}
is added. Immediately, the representative d∅A will not be contained in the rational domain anymore. It is
possible to imagine how the domain element da in I(∆

Kϕ
rat ) ∪ IA,T , belonging to the extension of A in the

minimal typicality model, now behaves exactly as the element d∅A did before. Therefore, non-entailment of
the defeasible instance check (∃s.X)(a) would correspond to satisfiability of ϕ.141770

Theorem 6.14. Deciding nested rational entailment (subsumption and instance checking) is co-NP–hard.

Proof. If it would be possible to solve the complement of nested rational entailment in less than NP–Time,
Lemma 6.13 implies that we would have a faster way of solving (1-in-3)-positive 3sat which contradicts its
NP–completeness. The proof of Lemma 6.13 is easily adapted to defeasible instance checking. If the
complement of nested rational entailment is NP-hard, then nested rational entailment is of course co-NP-1775

hard. �

As a consequence of Theorem 6.9 and Theorem 6.14 we have the following corollary and one of the main
results of this article.

Corollary 6.15. Deciding nested rational entailment is co-NP–compl..

As a result of this section, we present the overview of known complexities for deciding defeasible entail-1780

ments (subsumption and instance checking alike) in EL⊥ w.r.t. the discussed semantics as characterised by
pairs from {rat, rel}×{prop, nest} throughout the article in Table 1. As usual, the “in” notation expresses an
upper bound and “-c” denotes completeness. The completeness for propositional rational reasoning is shown
in Section 3 as a confirmation to the claim in [4]. The upper bound on propositional relevant reasoning
comes from the worst-case exponential number of justifications [21] that have to be enumerated to determine1785

consistent DBox subsets. Lower bounds for propositional (materialisation-based) relevant reasoning in EL⊥
have not been discussed in the literature, to the best of our knowledge. The complexity results for reasoning
under nested semantics are new and have been shown in this article. Discovering the precise lower bound
on nested relevant reasoning remains a non-trivial and open problem.

7. Conclusion and Future Work1790

In this paper we have investigated the defeasible Description Logic EL⊥ for the reasoning problems of
subsumption and instance checking. Starting from earlier work on the same DDL, we have illustrated the
issue of neglecting all defeasible information for quantified concepts that occurs from materialisation-based
approaches. The prominence of rational reasoning in DDLs achieved by materialisation-based algorithms
and the adaptation of the propositional KLM postulates to DLs, provides a solid motivation to investigate1795

solutions that are appropriate for DLs as they resolve the mentioned issue regarding quantification. We
initially had introduced the typicality model approach to alleviate the insufficiency of materialisation for
defeasible subsumption under rational and relevant closure in [11, 12].

New contributions of this article are characterisations of standard inferences under non-monotonic se-
mantics for defeasible Description Logics w.r.t. two parameters, namely different strength and coverage.1800

14Even though in classical reasoning, a lower bound on subsumption checking immediately translates to a lower bound on
instance checking, such a consequence is not trivial in DDL semantics.
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This includes the investigation of existing materialisation-based algorithms (subsumption, instance checking
[4]) as well as the new reasoning task: defeasible instance checking under relevant semantics which has not
been investigated so far. We showed for both reasoning problems that semantics of propositional cover-
age coincide with materialisation-based approaches and that semantics with nested coverage of defeasible
information properly extend the sets of obtained inferences. Furthermore, nested coverage provides con-1805

clusions regarding defeasible information for quantified concepts that were criticised to be missing under
materialisation. For a thorough characterisation of the discussed semantics, we presented complexity re-
sults for defeasible subsumption and instance checking under propositional and nested, rational and relevant
semantics.

As an initial result, we provided a materialisation-based reduction to classical reasoning in the tractable1810

sub-Boolean DL EL⊥. This certifies that propositional coverage need not become intractable for EL⊥ as
conjectured in [4]. Tractability of computing propositional rational closure in defeasible EL⊥ has been
independently and in parallel investigated by the authors Casini, Meyer and Straccia since 2015. The first
accessible manuscript of their results is currently only available as a technical report on arXiv [24].

It is common in the development of semantics for non-monotonic reasoning, that authors provide counter-1815

intuitive or artificial examples supposedly showing weaknesses of the discussed semantics. It is hardly
possible to rule out the existence of such examples for the typicality model approach. While our approach is
carefully designed to extend the materialisation-based approach, the satisfaction of the propositional KLM
postulates as well as the discovery of strictly stronger postulates that capture the nature of DL reasoning
and that are satisfied when reasoning with maximal typicality models is left for future work. As the study1820

of DDLs is a very active research area, it also remains to put the typicality model approach into perspective
with other recent non-monotonic extensions such as overriding [25], role-defeasibility [26] and context-based
defeasibility [27]. Immediate extensions of our formalism could be achieved on the logic level, i.e. investigating
more expressive DLs that also satisfy the canonical model property.
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